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Abstract
In order to achieve global stability using well-established linear control theory and 

techniques, a multiple model approach has attracted increased attention in recent years. 

In our previous work, a mini-max optimisation strategy was developed within the 

framework of a multiple model approach, in which a global controller can be designed 

without the requirement of membership/validity functions used in conventional 

methods, and the regime division was realised using a gap metric method. The major 

limitation of the reported methods is that robustness against process/controller 

disturbances cannot be addressed if the process switches from stable to unstable in 

operation. Furthermore, the number of local models is still large for highly non-linear 

processes even though the gap-metric method is incorporated. In this paper, a 

significantly modified multiple model approach is developed to achieve robust control 

with global stability. The main new features of the current approach include: (1) 

stabilization of open-loop unstable plants using a state feedback strategy, (2) 

incorporation of an adjustable pre-filter to achieve offset-free control, and (3) 

implementation of a Kalman filter for state estimation where necessary. The improved 

controller design method is successfully applied to two non-linear processes with 

different chaotic behaviour, namely a continuous stirred tank reactor and a Zymomonas 
mobilis reactor. Compared with conventional methods without model modifications, the 

new approach has achieved significant improvement in control performance and 

robustness with dramatically reduced number of local models. 
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1. Introduction 

Most chemical processes are non-linear in nature. However, for effective control and 

operation, low dimensional, linear models are highly desirable. It is not always possible 

to represent a non-linear process by a single linear model. Consequently, a multiple 

model approach has attracted increased attention in recent years (Murray-Smith and 

Johansen, 1997). In the conventional multiple model approach, a complex, non-linear 

model is reduced to a set of localised, linear sub-models. The overall model is the 

weighted combination of the local models (Shorten et al., 1999). However, it is not 

always easy to determine the so-called membership/validity functions used in the 

reconstruction of the overall model, and to effectively divide the operational regimes. In 

an attempt to eliminate the difficulties involved in the determination of blended models, 

Bartholomaus (2002) developed a mini-max optimisation strategy, in which a global 

controller can be designed without the requirement of membership/validity functions. 

However, the method leads to a large number of local models due to the lack of an 

effective strategy for regime division. In order to reduce the number of local models, we 

have incorporated the gap metric method into mini-max optimisation algorithms (Wang 

et al., 2003). In spite of the advances witnessed in the field, a major limitation of the 

reported methods can be identified as: “It is very difficult to achieve desired robustness 

properties if the process consists of open-loop unstable regimes”. It can be shown in the 

case studies carried out in this paper that, although acceptable control performance was 

obtained using reported methods for a class of chaotic processes (Morningred et al., 

1990; Bartholomaus, 2002; Wang et al., 2003), the robustness criteria have not been 

reached. This can be demonstrated easily through the observation of chaotic dynamics 

in the stabilized systems with slightly disturbed controller gains. If the robust issues 

cannot be effectively addressed, the reported methods have little practical significance 

for unstable processes. Furthermore, the number of local models is still large for highly 

non-linear processes.  

In this paper, a significantly modified multiple model approach is developed to achieve 

robust control with global stability. In the proposed approach, the original open loop 

unstable plants are first stabilized using a state feedback strategy followed by the local 

linearization within a regime classified by a gap metric measure. The smooth transition 

between regimes, as well as offset-free control can be assured through the incorporation 

of an adjustable pre-filter in the multiple model control framework. If the feedback 

states are not measurable, a Kalman filter is implemented for the state estimation. Two 

case studies, namely robust control of a continuous stirred tank reactor and a 

Zymomonas mobilis reactor, are carried out to demonstrate the advantages of the 

proposed approach over conventional ones.  It can be shown that the chaotic dynamics 

are under robust control with a dramatically reduced number of local models. 

2. Multiple Model, State Feedback Strategy 

The proposed multiple model, state feedback control strategy is schematically shown in 

Figure 1, in which the left part is the mini-max optimiser, and the right part is the non-

linear system.  



Figure 1.  Schematic Diagram of Multiple Model Approach with State Feedback

In Figure 1, E is the global linear controller, Kc and Kf are the state feedback and the

Kalman filter matrix, respectively, and P is the pre-filter with adjustable gains. The

non-linear model is described by:
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where x, y, and u are state, output and control variables, respectively. The non-linear 

model can be linearised into a set of local linear models Li in m regimes identified by

index i (i = 1, …, m) with state space matrices {Ai, Bi, Ci} and transfer function matrix

Gi(s). It should be noted that the relationship between matrix Ai with and without state 

feedback is: Ai = (Ai
0+BiKc), where Ai

0 is obtained before state feedback. The key issue

of the control study is the optimal determination of parameters in the global controller E 

and pre-filter P using mini-max optimisation algorithms. The gap metric method is used

as a measure for regime classifications, which was clearly described in Samyudia et al.

(1996).

3. Optimal Design of Controller and Pre-filter 

The optimal controller parameters are determined using mini-max optimisation

algorithms. The controller E(Q) consists of n parameters qj  Q  Rn,  The local

objective function in H-infinity norm format can be formulated as:
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where i = 0, 1, …, m with i = 0 as the starting operational point, J is the objective

function, W is the weighting function matrix, the subscripts u and e identify control and

error relevant functions, respectively. In principle, the mini-max optimisation can be

formulated as min max {J0, ,Jm} with respect to Q. Since it is very difficult to 

determine the starting point for optimisation (Bartholomaus, 2002), a sequential mini-

max optimisation algorithm is proposed in this paper, which is represented as follows:
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The overall parameter vector Q is applicable to all regimes rather than a single regime.

The following equation is used to determine the pre-filter gain for SISO systems:
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4. Case Studies 

A continuous stirred tank reactor model originally proposed by Morningred et al. (1990)

and further analysed by Bartholomaus (2002) is selected as the first case study. The

model is represented as: 
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The nominal values of model parameters are available from Morningred et al. (1990).

We treat k2qc[1-exp(-k3/qc)] together as the control variable u. The control objective is

to drive the concentration Ca from the initial operating point Ca = 0.06 to the final

operating point Ca = 0.16 along a specified staged trajectory by adjusting the coolant

flow rate qc. The process is open loop unstable with multiple steady states. The

conventional (Bartholomaus, 2002; Wang et al., 2003) and improved performances are

shown in Figure 2. The system becomes open loop unstable as Ca > 0.140. It can be

shown from Figure 2a that the conventional control leads to notable deviations from

desired trajectory in the unstable regime. The most unacceptable fact is that when the

conventional controller gain increases 10%, chaotic dynamics appear as shown in 

Figure 2b. This implies that the conventional controllers are of little practical

significance due to the robustness concern. The newly developed control scheme allows

a broad range of controller gain variations. The control variable profile and its

deviations from steady state are depicted in Figures 2c and 2d, and this is easy to

achieve. The number of local models is reduced from 10 (Wang et al., 2003) to 5 using



the proposed approach. Previous work by Bartholomaus (2002) suggests many more

than 10 were used.

Figure 2. Control of a chaotic CSTR

Figure 3. Control of ZMC with bifurcation behaviour 



The second case study is a Zymomonas mobilis reactor. Its model was fully described by 

McLellan et al (1999) and further analysed by Zhang and Henson (2001). The model 

consists of 5 state variables.  We choose biomass X as the output and dilution rate D as 

the manipulative variable. The conventional and modified performances can be seen in 

Figure 3. Figure 3a shows the performance with three different control schemes with an 

indication of multiple steady states. Figure 3b shows the oscillatory behaviour using 

conventional control schemes without state feedback. Similar to the first case study, 

oscillations become severe with a slightly disturbed controller gain. Both performance 

and robustness have been improved significantly using the proposed control scheme.  

Three local models are sufficient for effective control of this process. 

For both processes, the controller format is: (q1s
2+q2s+q3)/(q4s

2+q5s+1), and the pre-filter 

equation is: pi/(s+1), where q1-q5 are determined through mini-max optimisation, and 

the regime dependent parameter pi is computable using Equation (4).   

5. Conclusions 

Through the theoretical development and simulation studies on control of two non-

linear processes with chaotic dynamics, the following conclusions can be drawn: 

1. Although a class of non-linear processes with chaotic dynamics can be stabilised 

using conventional control schemes, this work has shown that robustness is the 

main issue preventing the industrial application of the reported methods. 

2. State feedback for pole placement is an effective strategy amenable within the 

framework of the multiple model approach, leading to significantly improved 

performance and robustness with a dramatically reduced number of local models. 

3. The mini-max optimisation techniques enable the design of a global controller 

without relying on membership and validity functions. An integration of mini-max 

optimisation, pre-filter design, state estimation using Kalman filter and state 

feedback leads to the development of robust, offset free control systems for non-

linear, unstable processes.  
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