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Abstract
In this paper, model based control of solidification is studied. A one-dimensional model 

that describes the dynamic response of the solidification rate for a pure substance is 

developed. The solidification of a metal column is controlled in order to solidify at a 

desired rate. The manipulated variable is the power to the heater at the top of the 

casting. A linear PI-controller is implemented and yields acceptable performance for the 

simulated case.  
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1. Introduction 

Phase transition in processes is an area of great technological importance in many fields, 

such as materials science, geology, energy processes, environmental sciences, food 

processing, and cryobiology. The characteristic feature of these processes is the 

presence of time evolving unknown boundaries separating the phases. Consequently, 

they belong to the class of moving boundary problems. The prototype of such problems 

is the Stefan problem, named after the early work of J. Stefan, who studied the melting 

of the polar ice cap around 1890. 

In metal casting, two important characteristics that determine the quality of the finished 

material are the growth velocity and the local thermal conditions at the solidification 

front. Figure 1 shows an example of the morphology of the solid/liquid interface as a 

function of the growth velocity. At high growth velocities, the interface between the 

solid and liquid phase becomes dendritic. The dendritic morphology at the interface 

may cause heavy segregation of impurities between the dendrite arms during 

solidification (Kou 1996), and thus the concentration of impurities in the solidified 

metal may be dependent of the solidification velocity. Hence, it may be desirable to 

control the rate of solidification to a predefined value in order to make the solidified 

metal as pure as possible. 

In this work, a one-dimensional numerical model for controlling the solidification rate 

in a pure substance is developed. Solidification modeling is reported in numerous 

papers and books. Since the advent of computers, many studies have been carried out in 
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order to describe phenomena at meso- or microscale levels. Nevertheless, according to 

Zabaras (1999), little research has been carried out on solidification modeling for real 

time control purposes. Modeling for control purposes requires a simplified description 

of the complex processes, in order to achieve acceptable computation time. Yet, the 

model must be able to predict the behaviour of the system reasonably well. References 

to related previous work in the field of phase transition modeling will be given in the 

next section. 

Control of solidification processes is reported in Zabaras (1990) and Zabaras et al. 

(1988). In these works, the control problem is adressed as an inverse problem, and a 

perfect model is assumed. No corrections are made due to model error and disturbances. 

The presence of model and parameter uncertainties are taken into account in Franke et 

al. (1996) where strategies to minimize a deviation error is calculated online, and action 

is taken by the furnace control system. Inverse Stefan problems are reported in several 

papers and books. Detailed information about this subject is found in Gol'dman (1997). 

Other works treating the inverse Stefan problem are Hoffmann and Sprekels (1982), 

Sagues (1982), and Jochum (1980). 

This paper is organized as follows: First a brief overview of modeling strategies for 

two-phase transitions is presented. Then the case study process is described. After that, 

simulation and control of the solidification rate are discussed. Finally some conclusions 

are drawn. 

Figure 1. Example of morphology of the solid/liquid interface at different growth velocities in a 
transparent organic system. Taken from Stefanescu (2002). 

2. Modeling strategies for two-phase transitions 

Two different approaches are used in the modeling of phase transitions in a spatial 

domain. In the most common approach, a sharp interface between the phases is 

considered, defined by the phase change temperature. The total domain  of the 

substance is then divided into two separate subdomains (one for each phase),  and  

in figure 2, and the heat and mass balance equations are formulated for each subdomain. 

This approach leads to one partial differential equation (PDE) for each subdomain 

(phase), with one boundary condition and one interface condition. The interface, or 

moving boundary, yields an ODE for the position of the interface. 

The one-dimensional classical Stefan problem is given by (Crank 1984): 
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where )ˆ/( pck  is the thermal diffusivity,  T is the temperature,  k  is thermal 

conductivity,    is the density, and pĉ is the specific heat capacity. 

At the interphase between the phases, the energy balance and Fourier's law of 

conduction yields 
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where fĤ  is the latent heat, and h is the position of the interface front. The boundary 

condition at the interface is: 
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where  Tch is the phase-change temperature. 
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Figure 2. Simplified sketch of the two-phase transition problem. v=dh/dt is the interface velocity 
and n is the normal vector of the interface. In the two-domain approach, the domain is divided 
into two subdomains (phase 1 and 2), and the balance equations are formulated on each 
subdomain. In the one-domain approach, the balance equations are formulated on the whole of 
the domain. 

Numerical methods for solution of the sharp interface approach are e.g. the level set 

method, fixed grid, and variable grid methods. The level set method is implemented for 

solidification processes in Gibou et al. (2003), whereas the method in general is 

described in Osher and Fedkiw (2003). Front tracking and front fixing methods are 

described thoroughly in Crank (1984). 

 In the second approach, the domain is considered as a whole,  in figure 2. The 

balance equations are then formulated on the whole of the domain; thus one PDE with 



two boundary conditions are valid for the whole domain (total volume). In this 

approach, the phase interface position must be calculated from the solution of the PDE. 

Some methods mentioned in the review of Hu and Argyropoulos (1996) are the methods 

of latent-heat evolution, the apparent heat capacity methods, the effective capasity 

method, and the enthalpy method. 

3. The solidification model 

We consider a metal column of height L, originally in liquid form. The metal column is 

assumed to be fully insulated on the vertical surface. The enthalpy method is employed. 

In the enthalpy method, equations (1) and (2) reduce to the single equation 
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where H is specific enthalpy, and it is assumed that k and  are independent of the 

temperature. The temperature and enthalpy are related by the function 
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and the temperature is found from the enthalpy found by inverting equation 

enthalpysemperature. The model is discretized in space (fixed and uniform grid) by the 

method of lines, yielding a system of ODEs. The discretized system is implemented in 

MATLAB (2004). 

A drawback of the enthalpy method is that the temperature and phase boundary 

dynamics become oscillatory, especially for isothermal phase changes. This is because 

the phase front is represented by a control volume rather than a surface (Chun and Park 

2000). Works employing the enthalpy methods are found in Voller and Cross (1981) 

and Voller et al. (1990). In these works, the front position is located by introducing a 

variable called local solid fraction, which locates the discretizing element containing the 

front position. Voller and Cross (1983) assumed that the fraction of solid may be 

linearly interpolated during latent heat release for the discretizing element containing 

the phase front. The amplitude of the oscillations in the phase front was reduced, but the 

fluctuations in the temperature were not influenced. Tacke (1985) suggested an 

improved discretization of the enthalpy method to obtain an oscillation-free solution. In 

that method, however, equal material properties for both phases are assumed. In this 

work, the method of  is extended to be valid for materials having different material 

properties in the two phases. This is done by using the mixture theory (Stefanescu 2002) 

for the grid cell containing the phase front 
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where k is the conductivity, fs is the value of the improved estimate of the fraction of 

solid calculated by Tacke's method. The online estimate of the position is 
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where i is the index of the grid cell containing the phase front, and z  is the grid size. 



4. Simulation and control of the solidification rate 

We now write the model as 
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and )(),(ˆ thgy ux   is the estimate in equation (5). 

The manipulated value is heating at the top of the casting (assuming constant cooling 

conditions): 
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If we want to control the velocity, the position must track a ramp. In continuous 

processes, an integrator is included in the controller to achieve zero error at steady state. 

Even though the solidification process is a batch-process, and hence never reaches 

steady state, it may be advantageous to include an integrator in order to decrease the 

controller deviation as the time elapses.  

The linear PI controller is given by  

IP KeKu1
,

where yse ref ˆ  ,  tvts refref )(   and  edt  . The result of the closed loop 

simulation is shown in figure 3. From the figure, the system appears to track the 

reference well. 

  Figure 3. Control of the solidification rate for a constant reference. 



5. Conclusions 

The intention of this paper is to develop a fast and simple mechanistic model for the 

position of the solidification interface. The model is simplified to make it suitable for 

control purposes, and is used to develop a linear PI-controller in order to control the 

solidification velocity. 

For the cases simulated above, the position tracks the reference well. It may be possible 

to extend the model and control strategy to a gas-liquid transition. 

Further research will include validation with experimental plant data and comparison 

with other modeling methods (e.g. the level set method). 
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