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Abstract
This study focuses on performance assessment of industrial controllers. A methodology 

based on the concept of the predictability of controller errors is proposed for 

performance monitoring. The proposed approach is based on evaluating controller 

behaviour by analysing the time series of its error and to verify the existence predictable 

patterns beyond the control horizon in each one of the controlled variables of the 

process. To favour its implementation in a plant information system a performance 

index is proposed. For effectiveness of the monitoring algorithm, proper selection of 

some tuning parameters depending on the type of loop (temperature, level, pressure, 

etc.) is discussed. Examples using industrial data from a refinery are provided. 

Keywords: Process control, controller performance, loop monitoring, performance 

benchmarking, fault diagnosis. 

1. Introduction

With the increasing complexity of control structures and the sheer number of controllers 

in modern process plants, the automation of performance monitoring tasks is a key issue 

to grasp the benefits of advanced control systems and real-time optimization (Thornhill, 

et al., 1999). In process plants there are thousands of control loops whose performance 

demands continuous supervision. Human personnel simply cannot have the budget of 

attention to handle this overwhelming task which renders many loops to remain open or 

providing a service much below the required standards. Abnormal operation of control 

loops can make a significant impact not only in the economy but also in the safety of the 

process. During the last decade several monitoring techniques have been developed. 

Desborough and Harris (1992, 1993) focusing on the comparison of the actual controller 

variance to ideal of a minimum variance controller. Thornhill, et al., (1999), proposed 

the prediction of the error to determine the performance of a SISO controller. Ghraizi, et 

al., (2004), suggest a practical index for performance monitoring of a control loop based 
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on the analysis of the predictability of the error time series emphasizing proper selection

of the control horizon using engineering judgment. The contribution of our work is

based on the proposal of a procedure to obtain an index that allows the controller

monitoring in closed loop and to evaluate its performance using predictions to detect the

existence of predictable patterns in the time series of the error associated to each one of 

the controlled variables of the process. The method was applied to analyze off line some

loops of PIDs in a petrochemical plant.

2. Monitoring methodology

The performance-monitoring concept revolves around the idea of predictability of

controller behavior beyond a chosen control horizon. Assuming the control horizon b
has been chosen appropriately, the behavior of a perfectly working controller cannot be 

predicted beyond the interval of time during which any disturbance entering the loop up

to a present time is supposed to be compensated (see Fig. 1 for details). On this ground, 

there may exist different alternatives to detect patterns of predictability in the time

series associated to controller errors and manipulated variable changes. It is worth

noting that as seen from time t, the controller error after time t+b of a properly working

controller cannot be distinguished from a random walk stochastic process. Over the

control horizon, the controller behavior is fully predictable since it corresponds to its

own control policy built-in by design.

redictable

unpredictable

redictable

unpredictable

Figure 1: presentation of the prediction of the error. 

It is worth discussing first the meaning of the control horizon b for a regulatory control

task. Whatever the internal workings (PID, Predictive, etc.) of a controller, the value of

b represents a sound engineering decision that takes into account among other things

process dynamics, type of service and acceptable control energy. Let´s denote by a 

scalar e(t) the controller error whereas stands for the prediction of such error based

on past values of the controller error, and possibly, control actions generated by the

controller. The difference between the actual and predicted controller errors is the

residue r(t) whose means and variance provide relevant information regarding the

predictability of a controller behavior.
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The calculation of a performance index from a given data set demands some way of

estimating future controller errors. The easiest way to do this is to propose a regression

model of the following form:

)1()2(3)1(2)(10)(ˆ mtmtttbt eaeaeaeaae  (1) 

Where m is the model order and ai are the parameters to be fitted upon data using for 

example least-square regression. The Predictability Index (PI) is calculated to bear

some similarity with the one proposed by Harris (1989) to measure the current



performance regarding the best performance that can be achieved using a minimum

variance controller,

mse
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Where, is the residue variance and mse is the mean square error. Similar calculations 

can be used to define a measure of the predictability of controller outputs. For a given

interval of time, if a controller does not exhibit a predictable behavior beyond the

control horizon, gives rising to a near zero value of PI. As the controller

behavior is more predictable mse increases relative to , which in turn increases PI.
For a controller exhibiting an easily predictable behavior (e.g., output saturation)
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<<mse(t) and PI=1. It is possible to define confidence intervals for sample estimations

of the predictability index, which allows using control charts to detect excursions

associated to loop malfunctions. The estimate to the confidence interval is carried out

according to the following equation:
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Where t1-a/2,n-1 is the Student statistic,  is the level of confidence, n and r are, 

respectively, the size of the group of the data and the variance of the noise.

3. Parameter tuning

It is necessary to provide some guidelines on how some parameters involved in the

calculation of PI should be selected. Parameter m, represents the order of the regression

model. This parameter should have a value that is big enough to capture the

characteristics of the time series of the error to reflect the predictable components in the

model. As a rule of thumb, m should have a value slightly bigger than the loop settling 

time. Too high a value for m creates problems of overfitting and poor extrapolation 

capabilities in the model, which will affect the sample estimation of the PI index.

Parameter n, is the size of the data sample and it should to take into account the trade 

off between index variance and data homogeneity. A very small size of the data set 

gives rise to big variance in the index distribution, while a too big data set is mixes

heterogeneous data, which may mask a lot of important information. Since index

calculation uses the error of controller and not the controlled variables, it is not

necessary that the loop remains in the same set point, but it is important that the

characteristics of the loop are the same throughout (Ghraizi, et al., 2003), such that,

sensors, valves, control algorithms should not be altered by calibration or tuning.

Regarding the sampling interval tm, is necessary to avoid an excessive or insufficient 

sampling. If the data are frequently sampled, the impulse response of the closed loop is

not established inside the m samples. With low frequency sampling, the impulse

response is only established inside a few samples and the important loop characteristics

are not captured between the samples (Thornhill, et al., 1999; Stanfelj, et al, 1993).

Parameter b represents the control horizon, which coincides with the prediction horizon

for the time series model. It has been analysed by different authors like Harris, (1989),

Desborough, and Harris, (1992), Harris, et al., (1996), Stanfelj, et al., (1993). In our 

work, we have observed that b should be equal to the loop settling time, independently 



of the type of the loop so that so it can reflect the necessary prediction characteristics in 

a control loop.

4. Industrial data analysis

In order to test the index, several analysis were performed with a Toolbox implementing

several monitoring functions. The length of the batches considered was n=1000 samples

of real plant data. The following graphs show the analysis of different loops taken from

a petrochemical plant. The parameters were adjusted to the nature of the loops. In this

way, we choose tm=5 sec., b=15 (number of samples), m=30 for flow control loops. For

level ones tm=60sec, b=30, m=30, (in this case n=720), for pressure tm=5 sec., b=5,

m=30, and for temperature tm=60sec., b=15, m=30. In the left part of all the graphs, we

can observe the batches of data and their analyses, while in the right part we can see a

zoom of a certain area of them to visualize some details. The upper graph corresponds 

to the controlled variable and its set point, while the values of the error and its

predictions are in the graph in the middle. Finally, in the lower one, the values of the

performance index PI are displayed. 

In figure 2 one can observe 17 batches of 1000 data of a flow loop which performance

deteriorates at the 13th batch, due to a perturbation that has affected the process. The

performance index at the beginning doesn't have high values what indicates that the

error has little predictability, as shown in the right hand side, but when the perturbation

appears, the manipulated variable saturates and the PI almost is equal to one. Notice the

bottom right hand side graph showing that the error can be predicted easily this time.

Once the process returns to its normal state, the error, and the index takes a small value

again.
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Figure 2: Data flow with their errors and PI.

In figure 3 one can observe results from a level loop where a change in the behaviour

takes place after t=1000 proximately. At the beginning, the PI has a small value but 

when the change takes place, PI increases reflecting the predictability of the error. By 

the contrary, the Harris index, shown in the bottom right hand side graph, does not

performs equally well remaining in a low value which means bad tuning, not taking into

account the special characteristics of an average level control.
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Figure 3: Data level with their errors and PI.

Figure 4 displays data from a cascade loop in which a temperature output is following a

changing set point very slowly with a significant steady error. In this case, the PI has 

high values all the time, and in the extended graph of the right is seen that the error is 

completely predictable. In addition, the Harris index is consistent with this result.

Data Temperature Data Temperature

Harris Index

Figure4: Data temperature with their errors and PI.

Finally, graph 5 shows the data of a pressure loop performing well. In this case, the

error is not predictable and the values of PI are always low. Also, the Harris index is

high but shows a higher variability than the PI. 

D ata pressure D ata pressure

Figure 5: Data flow with their errors and PI.



Figure 6 shows the main window of the developed Toolbox, which allows not only

perform analyses of a control loop using the index IP, but also other analyses based on

cross-correlation, power spectrum, impulse response, Harris index, etc., that can be used 

to confirm or perform a deeper analysis in order to detect the possible cause of the

controller's bad operation.

Figure 6: Data flow with their errors and PI.

5. Conclusions

This paper presents results showing a promising way of analysing the performance of 

industrial controllers using a time series of the error to detect the existence of

predictable patterns. An index was computed to achieve this analysis evaluating the

residuals between the controller's error and its prediction and some rules have been 

proposed to adjust the parameters of the method. Finally, it was applied to plant data

showing a good behaviour.
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