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Abstract
A contribution is made in the area of proactive scheduling with the aim to properly 
define the scheduling problem explicitly incorporating the effects of short-term 
uncertainties. The idea is to identify a robust initial schedule with the flexibility to react 
to unexpected events with minimum effects. The problem is modelled using a stochastic 
optimization approach where not only a set of anticipated scenarios can be considered, 
but also the capability to react to events once they occur. A stochastic genetic algorithm 
is developed to efficiently identify robust schedules with minimum expectance for the 
wait times and idle times that commonly arise in the operation of batch processes with 
variable operation times and machine breakdowns. The application of the proposed 
modelling framework to different batch processes shows the flexibility of the identified 
initial schedule and highlights the importance of exploiting the information of the 
uncertainty at the decision stage. 
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1. Introduction
Process variations and incomplete information are inherent characteristics of any 
process system, and flexibility to respond quickly and effectively to the dynamic and 
uncertain environment has become an essential feature for effective scheduling.  
Research in scheduling under uncertainty has mostly been focused either on reactive 
scheduling algorithms, implemented according to the actual situation of the plant once 
the uncertainty is realized or unexpected events occur, or on proactive scheduling 
approaches, which tend to generate schedules that are in some sense robust or 
insensitive to a priori anticipated uncertainties. The execution of optimal schedules 
based on nominal parameter values and the implementation of rescheduling strategies to 
face disruptions could result cumbersome and might lead to inefficient or costly 
reconfigurations as well as to plant nervousness. On the other hand, a robust schedule 
exhibits an optimum expected performance, but it is not likely to be the optimum one 
for the actual scenario that will finally occur. Both methodologies have usually been 
implemented independently, and relatively little attention has been given to the 
consideration of short-term uncertainties proactively (O’donovan et al., 1999; Kim and 
Diwekar, 2002; Jensen, 2003).  
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The incorporation of rescheduling aspects at the time of scheduling is proposed in this 
work. The identification of a robust initial schedule with the flexibility to react to 
unexpected events with minimum effects is pursued by explicitly addressing the major 
effects of variable processing times and equipment breakdowns in short-term scheduling 
of batch processes.   
These effects can be characterized by their main consequences in terms of task 
scheduling. On one hand, if a breakdown occurs and/or the actual processing time of a 
task is longer than the scheduled one, the time spent by batches waiting for the 
availability of the next unit increases. This might lead to unexpected delays, and 
eventually result in quality problems for sensitive or unstable materials that force the 
rejection of batches with the consequent increase of operational costs. On the other 
hand, if processing times are shorter than the scheduled ones, idle times appear and 
subsequent equipment under-utilization occurs (Figure 1).  
The approaches proposed so far that recognize the importance of considering the 
uncertainty into the decision level do not explicitly address not even analyze these 
critical situations that can arise during the execution of the schedule. However, the 
knowledge of this uncertainty can be usefully incorporated at the time of scheduling to 
reduce the gap between theory and practice, thus reducing reschedule requirements and 
improving the overall plant performance avoiding the occurrence of the full force of a 
perturbation. It is highly desirable to balance the trade offs between robustness, 
rescheduling and performance, and develop an initial schedule able to absorb 
anticipated disruptions, thus minimizing their effect on planned activities while 
maintaining acceptable plant performance. 
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Figure 1. Effects of processing times variability. 

2. Problem statement
The scheduling problem addressed comprises a multistage batch plant with a set of 
orders to be fulfilled, the set of processing stages required by each order, a set of units 
where they can be processed, the operations required by each stage, and the processing 
times of each operation, represented by probability distributions. This information has 
been modelled using the Process-Stage-Operation hierarchical approach defined by the 
standard ISA-S88 (ANSI/ISA, 1995), which provides a standard terminology and 
hierarchical structured models for batch processes.  



Due to the uncertainty in the operation times a detailed schedule is not pursued, but only 
the minimum information to be released to the batch process control is established. This 
information is related to the production sequence, the assignment of units to stages and 
the initial (expected) processing time of each process. The effects that may arise due to 
the uncertainty are explicitly managed by minimizing a weighted combination of the 
expected makespan and the expected wait times resulting from the execution of the 
schedule under a set of anticipated scenarios. The following assumptions are made: 

From the schedule, the control level (ISA S88) requires only information related to 
the sequence, the assignment of units to stages and the processes start times. Then 
production proceeds according to the control recipe.
The Non-Intermediate Storage policy (NIS) between stages is assumed.  
Within each stage, all the operations must be executed without interruption. When at 
the end of a stage (or before a transfer operation) the next unit is not available, a 
wait time has to be introduced. On the other hand, if a unit is available before the 
time it is required by the next stage, an idle time appears.  

Uncertainty associated with operation times can be represented indistinctly by discrete 
or continuous probability distributions. The scenario-based representation of the 
uncertainty is then adopted by sampling over all the probability space to approximate 
the expectation of the objective function. Other sources of short-term uncertainties can 
be easily incorporated within the proposed framework at the expense of a larger number 
of scenarios required to represent significantly all the uncertain space.  

3. Modelling 
The integrated framework for planning and scheduling of batch chemical plants 
developed by Cantón (2003) is used in this work for the modelling of the system. A set 
of tools, integrating both heuristic rules and optimization algorithms, are available to 
establish the number of batches to be performed, the sequence, and the assignment of 
production stages to specific units. Based on the characteristics of the problem and the 
specified objective function, different strategies combining these tools can be used. 
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Figure 2. Stochastic optimization framework. 
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Figure 3. stochGA solution procedure. 



A stochastic genetic algorithm (stochGA) has been designed and implemented within 
this scheduling framework. The GAlib C++ library (Wall, 1996) has been used with 
customised genome classes. Each individual of the population identifies an initial 
schedule, and is encoded using a mixed representation involving a real-valued string for 
the initial batch times, a permutation representation for the sequencing decisions, and a 
string of integer values for the assignment. For the reproduction process, suitable 
operators have been implemented in each part of the solution vector. 
The developed stochGA involves two recursive loops (Figure 2), and the algorithm 
proceeds as represented in Figure 3. There is an outer optimization loop controlled by 
the genetic algorithm, which directs the search to the identification of the initial times of 
each batch, the sequence and the assignment decisions that minimize a weighted 
combination of expected makespan and wait times, thus introducing robustness features 
as pointed out before. This outer procedure incorporates an inner sampling loop within 
which a set of probable scenarios are anticipated by sampling over the probability space 
to evaluate the probabilistic fitness for each individual. Specifically, the expected 
performance of each individual (schedule) is evaluated by computing for each scenario 
the wait time and makespan values that would occur when implementing its sequence, 
assignment and initial times under the assumed rescheduling policy; that is, the 
capability to react to events once they occur is considered when evaluating the 
individuals. The number of scenarios required to obtain a given accuracy for the actual 
mean and standard deviation of the performance measure is assessed.  

4. Results 
The proposed methodology has been applied to a case study based on a process plant 
involving 3 production stages and 8 operations. A scheme of the process is shown in 
Figure 4. Uncertainty in the operations of loading, heating and discharging has been 
introduced and characterized with a uniform distribution function. Two different 
products can be produced and five orders have been considered for scheduling.  
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Figure 4. Case study. 

The scheduling problem was solved using the proposed stochastic modelling and 
assuming a right-shifting rescheduling strategy. For comparison purposes, the 
deterministic problem considering only one scenario with nominal operation times was 
next solved. The production sequence, the assignment and the processes start times thus 
obtained were fixed, and the makespan and wait time values that would arise after the 
occurrence of each particular scenario were computed. The results obtained are 
summarized in Table 1. Figures 5 and 6 depict the schedules that would be executed in 
the plant for the nominal scenario and for one of the randomly-generated scenarios, 
respectively.



Table 1. Production sequence, initial batch times, expected makespan and wait 
time, and makespan and wait times in the nominal scenario (Mknom,
Wtnom), for the deterministic and stochastic optimized schedules. 

 Deterministic   Stochastic  
Batch Product Tin  Product Tin 

1 A 0.0  A 0.0 
2 B 5.6  B 5.8 
3 B 11.2  A 13.8 
4 A 19.4  B 19.8 
5 A 25.3  A 25.6 

E[Mk+Wt] 40.6  39.8 
Mk nominal 39.0  39.7 
Wt nominal 0.0  0.0 

From these results it can be observed that the deterministic modelling overestimates the 
system performance. Although the makespan and wait time values of the deterministic 
schedule are optimal in the nominal scenario, when the schedule is used to face the 
uncertainty the expected makespan and wait time value raises about 4%. The schedule 
identified with the stochastic approach shows a better expected performance over the 
anticipated scenarios of processing times.  
Despite the simplicity of the analyzed case study, and the relatively small variability 
associated with the uncertain operations, it is important to notice the consequences of 
neglecting the known uncertainty and the quick loose of optimality when implementing 
a deterministic schedule. 
Concerning the rescheduling features, different policies can be followed when the 
uncertainty is revealed or unexpected events occur besides avoiding changes once the 
execution of a schedule has already started: 

resolution of the new scheduling problem from scratch, 
right-shifting, generating the new schedule from the initial one just delaying the 
operations affected by the event, 
more sophisticated rescheduling methods. 
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Figure 5. Schedules that would be executed if the nominal scenario finally occurred according to 
(a) the deterministic and (b) the stochastic optimization approaches. 

Particularly, it can be considered that once a breakdown or an unreasonable wait time is 
detected, tasks can be just right-shifted or reassigned to alternative units, batches can be 



immediately rejected and new ones ordered, thus avoiding unnecessary wait times. In 
such a case, this knowledge related to the rescheduling policy should be incorporated 
proactively at the time of scheduling to improve flexibility and plant performance.  
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Figure 6. Schedules that would be executed in a particular scenario according to (a) the 
deterministic and (b) the stochastic optimization approaches. 

5. Conclusions 
A stochastic modelling and optimization approach is proposed in this work to address 
the processing times uncertainty arising in scheduling of batch processes. A robust 
initial schedule is identified which shows reduced expected wait times and acceptable 
line occupation, thus reducing eventual quality problems or unexpected delays.  
The applicability of the proposed framework highlights the importance of exploiting the 
information of the uncertainty at the decision stage by incorporating not only anticipated 
scenarios but also suitable reactions to improve the flexibility and the final quality of 
the schedule’s overall performance. 
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