
17th European Symposium on Computer Aided Process Engineering – ESCAPE17
V. Plesu and P.S. Agachi (Editors)
© 2007 Elsevier B.V. All rights reserved. 1

Mixing computer algebra and numerical methods
when solving CAPE models

Karim Alloulaa, Jean-Pierre Belauda, Jean-Marc Le Lanna

aLaboratoire de Génie Chimique (CNRS UMR 5503), INPT-ENSIACET, 118, route de
Narbonne, 31077 Toulouse Cedex 04, France, Karim.Alloula@ensiacet.fr

Abstract

A “hybrid” approach, mixing computer algebra and numerical methods, is
introduced for solving CAPE models. Mathematical expressions are handled
using computer algebra techniques, and are evaluated to real numbers when the
numerical methods require. A software realization, compliant with the CAPE-
OPEN standard, provided accurate results on an implicit model.

Keywords: CAPE software tools, computer algebra, model driven engineering,
MathML, component technology, CAPE-OPEN standard.

1. Introduction

Today, CAPE software community takes full advantage of advanced numerical
methods and tools, and promotes the software component technology to solve
the interoperability challenge. This paper presents a new approach for
leveraging both the numerical simulation and the computer algebra techniques
within the framework of the component technology:
1. describe the process model using eXMSL on the Web, a set of model building

components, incorporating computer algebra capabilities;
2. solve and optimize this model using (CAPE-OPEN compliant) components.

2 K. Alloula et al.

2. Computer algebra versus numerical methods

Before introducing our proposal, we first study in detail the relations between
the process model and the solving method in different cases: when simulating
with a CAPE-OPEN compliant simulator, when simulating with a computer
algebra system, or when using a computer algebra system as a pre-processor for
a CAPE software tool.

2.1. Simulation in CAPE-OPEN compliant software tools

A CAPE-OPEN [1] compliant simulator will provide interoperability interfaces
to other software tools. The main interfaces to set or get the process model
belong to the Unit Operations package and to the Physical Properties package.
The solving capabilities of the simulator may be compliant with several or all
the interface specifications available in the Numerics package described in [2].
Any call to a method in the Numerics package sets or gets numerical values.
Symbolic expression handling is not of concern with this standard .

2.2. Simulation in computer algebra systems

Part of a process may be simulated in today’s computer algebra systems (CAS)
such as Maple or Mathematica: model equations are entered using a syntax very
close to usual mathematical notation. The solving process, involving both
symbolic and numerical calculations is started by calling some specific routine.
Nowadays high performance numerical mathematical libraries are seamlessly
integrated in CAS [3], bringing numerical facilities to the computer algebra
users. But, because general purpose CAS are not CAPE oriented, many
facilities are missing. Simulating and optimizing a real plant with them remains
unrealistic.

2.3. Computer algebra systems as pre-processors for CAPE software tools

Benefits of computer algebra techniques are well known in the CAPE
community. One of the very first uses of computer algebra environments in our
discipline was thermodynamic model derivative calculation as illustrated by [4].
[5] used the Mathematica system to simulate a reactive distillation column. In
fact, simulation does not take place inside the computer algebra system. The
CAS, used as a code generator, provides a very efficient simulation code,
written in a compiled language. This pre-processing task can be viewed as a
model transformation technique. Numerical mathematical libraries may solve
the resulting model. This approach seems to be attractive because it conciliates
accuracy and efficiency. However, the benefits of the computer algebra
techniques are limited because the generated code handles numerical
expressions only.

Mixing computer algebra and numerical methods when solving CAPE models 3

3. Numerical methods integrating computer algebra steps

The success of current computer algebra systems in all the engineering
communities is owed (at least partly) to the fact that such systems seamlessly
combine symbolic manipulation steps and numeric evaluation steps. Starting
from a formal description of a model, involving symbols, functions and
numbers, they deliver what most of us are interested in: numbers! The numeric
evaluation steps may occur only at the end of the solving process but, most of
the time, the models to be solved are a combination of analytical expressions
and numerical expressions, such as thermodynamic correlations. Consequently,
symbolic manipulation steps and numeric evaluation steps are very intricate in
today’s CAS.
We believe in such a paradigm, however, in order for contemporary CAPE
software tools to take full advantage of these “hybrid” calculation techniques,
computer algebra features have to be clearly identified, and delivered in a
proper manner. The following paragraph lists the computer algebra features
process simulation environments should involve when solving various model
classes. We suggest providing those computer algebra services within a CAPE-
OPEN process simulation environment. Finally, a case study involving this tool
highlights the main benefits the CAPE software user may expect from mixing
computer algebra and numerical methods when solving models.

3.1. Required computer algebra features

3.1.1. Linear equations

Linear systems involved when solving a process model come mainly from
linearization of the non linear model required by the Newton-Raphson method.
Those linear systems may have hundreds of thousands unknowns and are very
sparse. Managing such a sparse structure for ensuring accuracy and for
minimizing calculation time is crucial.
When a direct method is used for solving a large sparse linear system, equation
reordering techniques may be valuable in order to limit the fill-in phenomenon.
Those techniques are in fact very close to computer algebra techniques:
reordering techniques work on lists of equations and variables, while computer
algebra systems work on expressions viewed as lists of sub-expressions.
When an iterative method is used, and especially when a matrix-free method is
employed, like the GMRES method [6], the numerical method can take full
advantage of a computer algebra representation of the system bxA =⋅ to be
solved. Thus, each product of the incident matrix A times any real vector r is
obtained efficiently by setting x to r and then evaluating numerically the
expression xA ⋅ .

4 K. Alloula et al.

3.1.2. Non linear equations

The model is entered the way it is edited in computer algebra systems, the
residual function F being automatically calculated by subtracting the right
hand sides from the left hand sides. The Newton operator)(xFΝ , which is the
Jacobian matrix in the bijective case, is obtained by formal differentiation of the
residual function. Matrix transpose and matrix products are required in the
surjective and injective cases. At each Newton iteration, k , the formal
mathematical expressions)(xF and)(xFΝ , involving symbols 1x , 2x , ...,

nx , are evaluated numerically after setting x to the real vector kx .

3.1.3. Differential algebraic equations

The model is entered the way it is edited in computer algebra systems, the
residual function F being automatically calculated by subtracting the right
hand sides from the left hand sides. Consistent initial conditions are computed
by setting the independent variable to its initial numerical value and solving the
resulting non linear system of equations. This step may require previous
differentiations of the original system. The residual derivative
[))](),(,(,))(),(,(txtxtxFtxtxtxF ∂∂∂∂ , with respect to the dependent
variables x and with respect to the dependent variable derivatives x , is
obtained by formal differentiation of the residual function F . According to the
integrator needs, the formal mathematical expressions),,(dxxtF ,

),,(dxxtxF ∂∂ and),,(dxxtxF ∂∂ , involving symbols t , 1x , 2x , ..., nx ,
1dx , 2dx , …, ndx , may be evaluated numerically after setting t to some real

value kt , x to some real vector kx and dx to some real vector kdx .

3.1.4. Non linearly constrained optimization

The criterion f and the constraints are entered the way they are edited in
computer algebra systems. Constraints are automatically converted to a
canonical form by subtracting one side of the inequality from the other
depending on the inequality operator. This canonical form defines a constraint
function c . The criterion derivative)(xf ′ and the constraint derivative)(xc′
are obtained by formal differentiation. According to the optimizer needs, the
formal mathematical expressions)(xf ,)(xc ,)(xf ′ and)(xc′ , involving
symbols 1x , 2x , ..., nx , may be evaluated numerically after setting x to some
real vector kx .

3.2. eXMSL on the Web, a CAPE-OPEN problem solving environment

The previous guidelines were applied within the framework of the CAPE-
OPEN software architecture. The result is a new software component, eXMSL
evaluation server, in charge of building models at the equation level, and

Mixing computer algebra and numerical methods when solving CAPE models 5

evaluating them and their derivatives at any point. Model descriptions and
model evaluations are both coded in an XML application: MathML 2.0 [7,8].
This textual and standardized format has been selected as the input for
generating the computer algebra representation of our models. eXMSL
Evaluation Server incorporates two CAPE-OPEN interfaces using .NET
technologies: Equation Set Object and Model. It uses Numerical Services
Provider which incorporates a CAPE-OPEN Solver component to provide a
complete modelling and solving solution.
eXMSL Model Editor, is built on top of these business interfaces, allowing the
end-users to edit, solve and optimize models through a graphical interface.

3.3. Case study: wine pH calculation

The case study model is detailed in [9]. A wine pH is calculated from the electro
neutrality of the solution and from the ionic force definition. Those equations
are formulated using all the species molalities, expressed as functions of the
unknowns: the H+ molality and the ionic force.
Acid molalities can be calculated from dissociation equilibria. These equilibria
can be solved by hand or by using any computer algebra tool. This way, acid
molalities are explicit functions of the unknowns. Such an approach has been
adopted for calculations presented in .
On the other hand, we adopted a fully implicit function formulation, where
dissociation equilibria are not solved in a pre-processing phase. All the model
equations were given as they appeared in the initial formulation, the eXMSL
software component being in charge of providing the acid molality numerical
values corresponding to some unknown values, whenever needed during the
solving process.

3.4. Results

The model was edited and solved under eXMSL on the Web, an application
which can be accessed from any Java enabled browser. Any model is saved as a
content MathML file, which can be viewed or partially evaluated in various

Figure 1 - eXMSL on the Web - UML component diagram

6 K. Alloula et al.

tools. Implicit function representation remains an original feature of the eXMSL
component and cannot be directly evaluated in any other CAS.
Numerical results obtained for the referenced model were very accurate,
although calculation time was slower than the calculation time associated to the
numerical software. Fortunately however, because of its implicit formulation
capabilities [10], eXMSL deals very easily with a model evolution (such as
taking into account the tartaric acid complexification with calcium and
potassium). Adding such evolutions to the initial model was much more time-
costly in the context of the numerical software.

4. Conclusion

The CAPE community seems to be convinced of the benefits associated to open
standards in software design, one goal being the production of interoperable
software components. The CAPE community mainly regards computer algebra
as a set of self-contained tools or as a pre-processing technique.
This work tries to introduce a combined approach, where computer algebra
techniques are exploited in software components, in charge of model definition
and evaluation. Seamless integration in a purely numerical solving environment
is achieved using the CAPE-OPEN standard.
Mixing computer algebra and numerical methods on case studies, already
brought reliable results: numerical calculations are very accurate, and models
remain consistent during all their life cycles. This “hybrid” approach is related
to process model driven engineering.

References

1. CAPE-OPEN standards and supporting documents, http://www.co-lan.org
2. J.-P. Belaud, K. Alloula, and J.-M. Le Lann, ESCAPE 11, Computer-Aided Chemical

 Engineering, 9, 2001, 967.
3. A. E. Trefethen and B. Ford, Mathematics and Computers in Simulation, No.54 (15-12-

 2000) 259.
4. R. Taylor, Fluid Phase Equilibria, No.129 (15-3-1997) 37.
5. M. F. Alfradique and M. Castier, Computers & Chemical Engineering, No.29 (15-8-

 2005) 1875.
6. Y. Saad and M. H. Schultz, SIAM Journal on Scientific and Statistical Computing, No.7

 (1986) 856.
7. A. E. Trefethen and B. Ford, Mathematics and Computers in Simulation, No.54 (15-12-

 2000) 259.
8. Mathematical Markup Language (MathML) Version 2.0 (Second Edition),

 http://www.w3.org/TR/MathML2/
9. H. Akin, C. Brandam, X.-M. Meyer, and P. Strehaiano, SIMO 2006, France (Toulouse),

 2006
10. K. Alloula, J.-P. Belaud, C. Leibovici, and J.-M. Le Lann, SIMO 2006, France

 (Toulouse), 2006

