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Abstract

Batch processes are generally executed on production plants consisting of multi-purpose processing units and storage facilities of limited capacity. We deal with the problem of computing a minimum-makespan production schedule for given primary requirements. Our solution approach is based on a decomposition of the problem into two subproblems. The first subproblem consists in computing an appropriate set of batches for each process. We present a novel formulation of this problem as a mixed-integer linear program of moderate size. The second subproblem is to schedule the processing of these batches on the processing units subject to material-availability and storage-capacity constraints. We tackle the latter problem with a new priority-rule based scheduling method. Computational experience with a sample production process presented in Maravelias and Grossmann (2004) shows that with the decomposition method near-optimal production schedules can be computed in a very small amount of CPU time.
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1. Introduction

In the process industries, low volumes of multiple products are typically produced on multi-purpose batch plants. In batch production mode, the total requirements for the final products and the intermediates are split into batches. To process a batch, first the inputs are loaded into a processing unit, then a transformation process is executed, and finally the output is unloaded from the unit. We consider multi-purpose processing units, which can operate different processes. The duration of a process depends on the processing unit used. Between consecutive executions of different processes in a processing unit, a changeover with sequence-dependent duration is necessary. The minimum and maximum filling levels of a processing unit give rise to a lower and an upper bound on the batch size. In general, raw materials, intermediates, and final products can be stored in storage facilities of finite capacity. Some products are perishable and therefore must be consumed immediately after they have been produced.

The short-term scheduling of multi-purpose batch plants has been widely discussed in the literature. Recent reviews can be found in Floudas and Lin (2004), Burkard and Hatzl (2005), and Méndez et al. (2006). Roughly speaking, monolithic and decomposition approaches can be distinguished. The major limitation of the former approaches consists in the impractical amount of computation time which is required for solving problem instances of practical size (cf. Maravelias and Grossmann 2004). Decomposition approaches divide the problem into a planning and a scheduling problem. Planning determines the batch size and the number of executions for each process, and scheduling allocates the processing units and storage facilities over time to the processing of the corresponding batches (cf. Neumann et al. 2002). In this paper, we present a novel formulation of the planning problem, which allows for considering alternative processing units with unit-specific lower and upper bounds on the batch sizes. In contrast to the nonlinear model presented in Trautmann and Schwindt (2005), the new formulation represents a mixed-integer linear program, which can be solved to optimality using standard mathematical programming software. For approximately solving the resulting scheduling problem, we propose a priority-rule based method. 
The remainder of this paper is organized as follows. In Section 2, we formulate the planning problem as a mixed-integer linear program. In Section 3, we present our schedule-generation scheme for the scheduling problem. In Section 4, we report the results of an experimental performance analysis that is based on a sample production process presented in Maravelias and Grossmann (2004).
2. Planning Problem

2.1. Problem Statement

In the following, we interpret each combination of a transformation process and a processing unit as a task. For example, if two processing units are available for executing a process, then we define two tasks for this process. The planning problem consists in determining the batch size and the number of executions for each task such that the given primary requirements for final products are satisfied, the prescribed intervals for the batch sizes are observed, each perishable product can be consumed immediately after production, and the total bottleneck workload is minimized.

2.2. Formulation as a Mixed-Integer Linear Program

In our model formulation, we use the following notation:
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set of all products, set of all perishable products
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set of all tasks producing product 
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set of all tasks that can be processed on unit 
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set of all processing units in group 
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lower bound on batch size of task 
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upper bound on number of executions of task 
[image: image23.wmf]t



[image: image24.wmf]p

r


primary requirements of product 
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storage capacity for product 
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workload of group 
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 of processing units

2.2.1. Constraints

The batch sizes must be chosen within the prescribed bounds, i.e.,
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and such that for each perishable product 
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The final inventory of product 
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 must be sufficiently large to satisfy the primary requirements 
[image: image48.wmf]p

r

, but it must not exceed the given storage capacity 
[image: image49.wmf]p

s

, i.e.,


[image: image50.wmf]p

p

n

m

m

t

t

tp

p

p

s

r

b

a

q

r

t

+

£

+

£

å

å

=

Î

1

T

   (
[image: image51.wmf]P

Î

p

)
(3)

Eventually, we link the variables 
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It is readily seen (cf. Neumann et al. 2002) that inequalities (4) imply the equivalences 
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The linear ordering of the binary variables 
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 belonging to the same task 
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 serves to reduce the size of the feasible region significantly without any loss of generality:

[image: image61.wmf]t

n

t

t

t

e

e

e

³

³

³

L

2

1

   (
[image: image62.wmf]T

Î

t

)
(5)
2.2.2. Objective Function

Our primary objective is to minimize the total bottleneck workload, which we compute as follows. We divide the processing units into as many groups as possible in such a way that first, each processing unit belongs to exactly one group and second, each transformation process can only be executed on processing units of one and the same group. The set of all these groups is denoted by 
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Often there are several feasible solutions minimizing the total bottleneck workload. Therefore we additionally try to minimize the workload on the non-bottleneck units (second-order criterion) and the total unneeded inventory (third-order criterion). With 
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 being sufficiently small constants, we formulate our objective function
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Optimization Problem

In sum, the planning problem reads as follows:
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3. Scheduling Problem

3.1. Problem Statement

A solution to planning problem 
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 provides us with the set of task executions yielding the required amounts of intermediate and final products. For what follows we refer to a task execution as an operation, and 
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 denotes the set of all operations. The scheduling problem consists in determining a start time 
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 for each operation 
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 in such a way that no two operations are processed simultaneously on the same processing unit, the processing units can be changed over between consecutive operations, sufficient amounts of the input materials are in stock at the start of each operation, there is enough storage space available for stocking the output products at the completion time of each operation, and the completion time of the last operation (i.e., the production makespan) is minimized. The immediate consumption of perishable intermediates is ensured by associating each product 
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 with a fictitious storage of capacity zero. 
3.2. Scheduling Method
The first step of our algorithm consists in generating an operation-on-node network. Each operation 
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 corresponds to one node of the network. The nodes are connected by arcs representing minimum and maximum time lags between the start times of the operations. If the scheduling problem is solvable, then there always exists an optimal schedule for which all those temporal relationships are satisfied. Assume that we have arranged the operations belonging to the same task in some arbitrary order. Since the task can only be processed on one unit, the operations have to be executed one after another. Accordingly, we define a minimum time lag which is equal to the task’s processing time between any two consecutive operations in the sequence. We may add further arcs by exploiting the input-output relationships between the tasks. If an intermediate is produced by exactly one task, we can identify minimum time lags which are necessary to the timely availability of the input materials. If an intermediate is consumed by exactly one task, we can add arcs to avoid capacity overflows in a similar way. Those arcs correspond to maximum time lags between producing and consuming operations. 

Next, we determine the strong components of the network, i.e., the 
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-maximal sets of nodes such that the network contains a directed path from each node to each other node of the set. Since any two nodes of a strong component are mutually linked by temporal relationships, all operations belonging to the same strong component are scheduled consecutively in our method. 
The basic idea of the scheduling method is very simple. In each iteration we schedule one eligible operation, which is selected based on priority values. The operation is started at the earliest point in time at which the minimum and maximum time lags of the network are satisfied, the operation can be executed on the processing unit, and a sufficient amount of input materials is available. The operations of a strong component are eligible to be scheduled if (i), all of those operations' predecessors in the network outside the strong component have already been scheduled, (ii), there is enough input material available to process all operations of the strong component, and (iii), there is no other strong component for which some but not all operations have been scheduled. Thus far we have not taken the limited capacity of the storage facilities into account. The storage-capacity constraints are considered via capacity-driven latest start times. If in some iteration of our method we have generated a capacity overflow in a storage facility at a time 
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, we temporarily force eligible operations consuming the product stocked in this facility to start no later than time 
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. Those latest start times are maintained until the capacity overflow has been removed. As a consequence it may happen that an eligible operation can no longer be scheduled because the capacity-driven latest start time is smaller than the earliest feasible start time. If no eligible operation can be selected, we perform an unscheduling step in the following way. At first, we determine the operation 
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 that produced the material which cannot be stocked. Next, we select one of the eligible operations, say, operation 
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 belong to the same strong component, we remove all operations of this strong component from the schedule and resume the scheduling method. Otherwise, we remove all operations and restart the scheduling procedure from scratch. The unscheduling step may generate unnecessary idle times, which can easily be removed in a postprocessing step. 
The algorithm can be implemented as a multi-start procedure by randomly disturbing the priority values of the operations. In our implementation the initial unbiased priority values are based on earliest feasible start times, the sizes of the strong components, and the capacity-driven latest start times of the operations.

4. Performance Analysis

4.1. Implementation and Settings

We have tested the performance of our decomposition approach on a set of 28 test instances, which have been generated by varying the primary requirements for the four final products of the Maravelias and Grossmann (2004) sample process. We compare our method to the results obtained with the monolithic time-indexed problem formulation of Kondili et al. (1993). The tests have been performed on an AMD personal computer with 2.08 GHz clock pulse and 1 GB RAM. The mixed-integer linear programs of the planning problem and the monolithic model have been solved with CPLEX 10.2, and the multi-pass priority-rule based scheduling method has been implemented in C++. For the latter method, we have imposed a run time limit of 1 second.
4.2. Results

Table 1 shows the optimum makespans computed with the monolithic model and the CPU times in seconds, including the time required to prove the optimality of the solution. The last two columns of the table list the makespans and the CPU times obtained with the decomposition approach. Out of the 28 instances, 17 could be solved to optimality, and the maximum relative optimality gap is less than 7 %. The results obtained for the larger instances indicate that our method scales quite well. The maximum CPU time is less than 3 seconds, versus more than two hours for the monolithic approach. In sum, the analysis shows that the decomposition approach is able to provide good feasible schedules at very modest computational expense. Hence, the method is well-suited for the planning and scheduling of real-life processes, where due to various types of uncertainties a frequent rescheduling of the operations is often necessary.
	
	Kondili et al. (1993)
	This paper

	Instance
	Primary req.
	Makespan
	CPU time
	Makespan
	CPU time

	MG-01
	(3,3,7,7)
	17
	1.74
	18
	1.34

	MG-02
	(3,7,7,3)
	19
	2.11
	20
	2.16

	MG-03
	(7,7,3,3)
	17
	1.35
	17
	1.39

	MG-04
	(3,7,3,7)
	17
	1.63
	17
	1.57

	MG-05
	(7,3,7,3)
	17
	1.79
	17
	2.06

	MG-06
	(7,3,3,7)
	16
	4.04
	17
	1.59

	MG-07
	(5,5,5,5)
	16
	7.99
	17
	1.27

	MG-08
	(6,6,14,14)
	29
	6.41
	29
	1.59

	MG-09
	(6,14,14,6)
	28
	10.29
	29
	1.69

	MG-10
	(14,14,6,6)
	29
	0.79
	29
	1.75

	MG-11
	(6,14,6,14)
	26
	3.68
	26
	1.59

	MG-12
	(14,6,14,6)
	26
	3.22
	26
	1.42

	MG-13
	(14,6,6,14)
	22
	33.39
	23
	1.80

	MG-14
	(10,10,10,10)
	25
	9.58
	26
	1.57

	MG-15
	(9,9,21,21)
	41
	23.93
	41
	1.91

	MG-16
	(9,21,9,21)
	37
	31.88
	38
	1.54

	MG-17
	(21,21,9,9)
	41
	13.98
	41
	1.56

	MG-18
	(9,21,9,21)
	35
	30.44
	35
	1.93

	MG-19
	(21,9,21,9)
	35
	17.24
	35
	1.70

	MG-20
	(21,9,9,21)
	28
	385.18
	29
	1.40

	MG-21
	(15,15,15,15)
	34
	137.33
	35
	1.81

	MG-22
	(12,12,28,28)
	53
	190.24
	53
	1.70

	MG-23
	(12,28,28,12)
	47
	329.47
	47
	1.85

	MG-24
	(28,28,12,12)
	53
	42.80
	53
	2.39

	MG-25
	(12,28,12,28)
	44
	221.04
	44
	1.94

	MG-26
	(28,12,28,12)
	44
	25.43
	44
	1.63

	MG-27
	(28,12,12,28)
	35
	8804.97
	37
	2.38

	MG-28
	(20,20,20,20)
	41
	156.93
	41
	1.40


Table 1: Computational results for the 28 problem instances
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