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Abstract
Associated with a strategic optimization of logistics network design to improve the business efficiency, we developed a method termed hybrid tabu search, and have applied it to various real-world problems through imposing proper conditions on the generic model. During a planning horizon for the design, however, there usually occur various changes assumed constant in such a strategic or static consideration. In this study, therefore, we have extended the previous method so that we can make a more reliable and operational decision by taking into account the dynamic circumstances and focusing on the role of inventory management of warehouse over planning horizon. Finally, numerical experiments revealed the significance of multi-term planning and the validity of the proposed method in comparison with the commercial software.
Keywords: Multi-term logistics planning, Inventory management, Large-scale combinatorial optimization, Hybrid tabu search.

1. Introduction
Logistic optimization has been acknowledged increasingly as a key issue of supply chain management to improve the business efficiency under global competition and agile manufacturing. Though many studies have been made in the operations research field associated with the combinatorial optimization (for example, Campbell, 1994), we need to make more elaborate efforts to cope with complex and complicated real world problems. From such aspect, we concerned various logistic optimization problems for strategic or static decision making.
Associate with the production planning, however, it is necessary to notice the various deviations assumed constant in the strategic or static model. Taking into accounts such a dynamic circumstances, we can make a more reliable and operational decision making. In this study, therefore, we have extended our previous approach termed hybrid tabu search so as to deal with multi-term problem, and incorporate an inventory management of warehouse or distribution center (DC) into the logistic network design optimization.

After presenting a general formulation and its algorithm, the validity of the proposed method is shown through numerical experiments. 

2. Problem Formulation
2.1. Preliminary Statements
Many studies in the area of operations research emphasize to develop new algorithms and compete their abilities through simple benchmarking and/or to prove theoretically the facts about how fast, how exactly and how large problem to be solvable. However, easy applications following these outcomes often cause a dramatic increase in problem size in real world problems, and accordingly such a difficulty that makes almost impossible to solve the resulting problem by any currently available software. 

Under such understanding, to cope with the specific problem in complex and complicated situation, we concerned various logistic optimization problems subject to the conditions such like a realistic discount of transportation cost, flexibility against demand deviations, multi-commodity delivery and so on (Shimizu & Wada, 2004; Wada, Shimizu & Yoo, 2005; Shimizu, Matsuda & Wada, 2006; Wada, Yamazaki & Shimizu, 2007). The hybrid tabu search used in those studies decomposes the original problem into upper-level and lower-level sub-problems, and applies a suitable method for each sub-problem. 
The upper level sub-problem decides the locations of DC by the sophisticated tabu search. Tabu search (TS; Glover, 1989) is a metaheuristic algorithm on a basis of local search technique with a memory structure. The TS repeats the local search iteratively to move from a current solution x to a possible and best solution x' in the neighbor of x. To avoid the cycling of the solution, the TS uses the tabu list that prohibits transition to any solutions for a while even if this will improve the current solution. 

On the other hand, the lower level sub-problem decides the network routes under the prescribed upper level decision. It refers to a linear program possible to be transformed into a minimum cost flow (MCF) problem. In practice, this transformation is carried out by adding virtual nodes and edges to the physical configuration as illustrated in Fig.1. Then the resulting MCF problem can be solved by the graph algorithm for which especially fast solution algorithm such as CS2 (Goldberg, 1997) is known.
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Now, by returning to the upper-level, neighbor locations are to be evaluated following the algorithm of the sophisticated tabu search. These procedures will be repeated until a certain convergence criterion has been satisfied. Figure 2 illustrates schematically this solution procedure. Selection probability of the local search operation summarized in Table 1 is decided based on the following ideas. It makes sense that the search types like “Add” and/or “Subtract” might be used often at the earlier stage of search while “Swap” is more suitable at the later stage where the number of open DCs attain almost at the optimum. Letting it be a basis to decide the probability, we further extended an idea to do it more effectively using the long-term memory or a history of so far search processes. That is, the probability of each operation is increased by a certain rate if it has brought about the update of solution.  In contrast, these values are reset when the tentative solution is not improved by the prescribed consecutive duration and/or an feasible solution has not been obtained. 

	Table 1  Employed neighborhood search operations

	Search type
	Selection probability
	Neighborhood operation

	Add
	padd
	Let closed DC open.

	Subtract
	psubtract
	Let open DC close.

	Swap
	pswap
	Let closed DC open and open DC close.


2.2. Multiterm Model over Planning Horizon
We have extended the static or single-term development to cope with the multi-term problem in a practical manner. By making use of the available stock of DC to the descendent periods (inventory management), we can expect to bring significant effects to the strategic decision making. 

After all, we have formulated mathematically the problem as a mixed-integer programming problem stated below. The objective function is composed of the total transportation cost between every facility, the total production cost at plant, and the total operational cost at each facility, the total holding cost at DC over the planning horizon, and the total fixed-charge for the open DCs. 

On the other hand, the constraints require to meet the demand of every customer every period; capacity constraint at each DC every period. The upper and lower bounds on the production ability of each plant every period, and the material balance at each DC every period. Additionally, non-negative conditions are imposed on the material flows and binary condition on the open/close selection.  Finally, the model has the problem size such that: number of integer variables is J, continuous variables T (IJ+J2+JK+IK+J), and constraints T(2I+2J+K) where notation I, J, K and T denote number of plants, DCs, customers and terms, respectively.
3. The Hybrid Tabu Search for Multiterm Transport
Under the multi-term condition, the lower level sub-problem of the hybrid tabu search needs to decide the network routes for every period. It refers to a linear program whose coefficient matrix becomes almost block diagonal per each period and expands rapidly with the number of terms as known from the foregoing statement. [image: image2.emf](b) (a) (b) (a)


	Table 2  Labeling on the edge

	Edge ID
	Cost
	Capacity
	Description

	#1
	0
	∑t∈T∑i∈I Pit
	source－∑

	#2
	Cit
	Pit - Pit
	source－plant i (period t)

	#3
	Cit
	Pit
	∑－plant i (period t)

	#4
	Eijt
	∞
	plant i－DC j (period t)

	#5
	Hjt
	Ujt
	between doubled nodes representing DC

	#6
	Ejj't
	∞
	DC j－DC j' (period t)

	#7
	Ejkt
	∞
	DC j－customer k (period t)

	#8
	Eikt
	∞
	plant i－customer k (period t)

	#9
	D
	Dkt
	customer k－sink (period t)

	#10
	Kjt
	∞
	stock at DC j (period t)


Noticing a special topological structure associated with the minimum cost flow problem, however, we can present a smart procedure to transform the bulk original problem into a compact form as follows:
Step 1: Every period, place the nodes that stand for plant, DC (doubled), and customer. Next, virtual nodes termed source, ∑, and sink are placed at the top and the bottom, respectively. Then connect the nodes between source and ∑ (#1), source and plant (#2), ∑ and plant (#3), up and down DC nodes (#5), and customer and sink (#9). This results in the graph as depicted in Fig.3 (a).

Step 2: Letting z be the total amount of customer demand over planning horizon, 
             z=∑t ∈ T∑k ∈ K Dkt, flow this amount into the source, and flow out from the sink.

Step 3: To constrain the amounts of flow, set the capacities on the edges identified by #1, #2, #3, #5 and #9 as each in “Capacity column” in Table 2. Apparently, there never induce any costs on edge #1 and #9 for the connections.

Step 4: To allow the stock at DC, add the edges from down-DC node to up-DC node in the next period (#10) as shown in Fig.3 (a). For the labeling, see the “#10” row of the table.

Step 5: Connect the edges between plant and DC (#4), DC and DC (#6), DC and customer (#7) and plant and customer (#8) every period.

Step 6: Finally, place the appropriate label on each edge.

From all of these, we have the final graph as shown in Fig.3 (b) that makes it possible to still apply the graph algorithm like CS2 (Goldberg, 1997). Consequently, we can solve the extensively expanded problem extremely fast compared with the linear programs.

4. Numerical Experiment

4.1. Preliminary Experiments
In long term planning, instead of the dynamic model, a strategic or conceptual decision is often made based on the averaged values for the time being. This is equivalent to say that we attempt to obtain only a prospect from the static or single-term problem whose parameters fluctuate in reality over the planning horizon such as demand.
To verify the advantage of considering the dynamic model that makes use of the stock at DC, first we compared the results between the (averaged) single-term model and the multi-term model using small size benchmark problems. In Table 3, we summarize the results taken place under the conditions of demand deviations. Thereat, we know that the dynamic model can derive the decisions with less total costs (the value of average model is represented as the rate to that of the multi-term model to be one hundred). Particularly, it is remarkable that the average model involve an infeasible solution against the demand deviations while the multi-period model always copes with the situation by virtue of the inventory management. For example, as shown in Fig.4, the appropriate production plan is carried out and the stocks at the DC are utilized to meet the customer demands changed beyond the production ability at plant.
	Table 3  Effect of dynamic model

	Properties of problem            Cost (rate)

	Plant
	DC
	Cust
	Term
	Averaged

	1
	10
	20
	5
	107.9

	1
	15
	25
	10
	N/A

	1
	20
	30
	20
	138.2
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	Table 4  Computation environment for numerical experiments

	Method
	CPU type
	Memory
	OS

	CPLEX
	Pentium4 3.0 GHz
	512 MB
	Windows XP

	This work
	Pentium4 3.0 GHz
	512 MB
	Debian 3.0


4.2. Evaluation of the Proposed Algorithm
From so far discussions, it is interesting to examine the effectiveness of the proposed method in terms of problem size. Every result of the proposed method is averaged over five trials. In Table 4, we summarize the computation environment for the present numerical experiments. 
Figure 5 compared the CPU times along the number of planning horizon between the proposed method and CPLEX 9.0 (parameters deciding problem size are set as I=2, J=25 and K=30, and a few problem sizes are shown there.).  Thereat, we can observe the CPU time of the proposed method increases almost linearly while exponentially for the CPLEX. 
As shown in Table 5, the proposed method can derive the same results as the CPLEX (supposed optimal) with much shorter CPU times for every problem within the range where we can compare. For each, the gap between MIP and its LP relaxed problem stays almost at constant, say 8～10%, but the load (CPU time) rate increased considerably (but not so rapidly) with the term.  
	Table 5 Comparison with commercial software

	Term
	CPU time [s]
	Rate*

	
	CPLEX
	Hyb-tabu
	

	1
	0.91
	0.14 
	1.0000

	5
	10.50
	0.84
	1.0000

	10
	33.66
	1.82
	1.0000

	25
	138.83
	5.88
	1.0000

	50
	904.26
	17.42
	1.0000

	75
	1648.20
	27.12
	1.0000

	100
	3782.88
	34.23
	1.0000
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From these numerical experiments, the proposed method is expected to achieve the high approximation rate of optimality fast even for larger problems, and supposed to be promising for real world applications. 
5. Conclusions
This paper concerned a multi-term logistic optimization problem by extending a two-level method termed hybrid tabu search developed by the authors previously. For this purpose, we have invented a systematic procedure to transform the mathematical programming model into a compact graph model manageable for inventory over the planning horizon. This enables us to solve the long-term logistic network optimization problem that any other methods never have dealt with. Numerical experiments revealed that such inventory control could bring about an economical effect and robustness against demand deviations. The validity of the proposed method was also shown in comparison with the commercial software.
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Fig.1 Transformation of network to MCF graph





Fig.2 Schematic procedure of hybrid tabu search





Fig.3 Transformation procedure to aggregate MCF graph for three-term problem: (a)Add edges for inventory, and (b) Final stage





Fig.5 Comparison of CPU time with commercial software





Fig.4 Role of inventory in multi-term planning





* Objective function value of Hybrid tabu/CPLEX











