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Abstract

Most of the Supply Chain (SC) design models have focused on the integration problem, where links among nodes have to be determined in order to allow an efficient operation of the whole system. In this level, all the problem elements are modeled like black boxes, and the optimal solution determines the nodes allocation and their capacity, and the connections among nodes. In this work, a MILP model is proposed where decisions about plant design are simultaneously taken with operational and planning variables. The model considers unit duplication and the allocation of storage of discrete sizes. The solved examples show the impact of plant design in the overall SC operation.
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1. Introduction
A supply chain (SC) is a network of facilities (e.g. plants, warehouses, customers) that perform a set of operations ranging from the acquisition of raw materials to the distribution of finished goods to customers. The design of the SC involves making several decisions like number, size and location of plants, products to be produced in each plant, allocation of suppliers to plants and plants to distribution centers, etc. 
Most of the design models have focused on the SC integration (Tsiakis et al., 2001, Ryu and Pistikopoulos, 2005), where links among nodes have to be determined in order to allow an efficient operation of the whole system. In this level, all the problem elements are modeled like black boxes, with a maximum capacity, and the optimal solution determines the nodes allocation and their capacity, and the connections among them.

Recently, Guillén et al. (2006) have addressed the SC design problem under demand uncertainty through a multistage stochastic formulation, using a decomposition technique that combines genetic algorithms and mathematical programming tools. Shah (2005) has described the state of the art in SC modeling. remarking that there are not published works dealing with the connection between process design and SC operation. 
In this work, a mixed-integer linear programming (MILP) model is proposed for the optimization of a SC where decisions about plant design are simultaneously taken with operational and planning variables. The model considers unit duplication in phase and out of phase and the allocation of intermediate storage of discrete sizes. Several examples are solved to show the impact of plant design in the overall SC operation.
2. Problem Description
Four echelons in the SC are considered in this formulation: the raw material sites, the manufacturing plants, the warehouses and customer zones. At each raw material site s (s =1,…, Ns), one or more types of raw materials r (r = 1, …, Nr) are available to be delivered to plants l (l = 1, …, Nl), that operate during the time horizon Hl. Each multiproduct batch plant has stages j (j = 1, …, 
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) for producing i products (i = 1, …, Np). Parallel units duplication in phase and out of phase are allowed as well as the allocation of intermediate storage between two batch stages. The warehouses m (m = 1, …, Nm) have different stock capacity and the product demand of the customer zones k, Dik, are known for k = 1, …, Nk. Moreover, the following data is assumed to be known:
(i) the set of raw materials and their availability at each raw material site 

(ii) the set of available discrete sizes for units in the batch plants
(iii) the cost parameters associated to: plants and warehouses installation, investment and production, transportation, raw material and maintenance.
The problem is to determine:

(a) the allocation of each plant and each warehouse
(b) production of each product in each plant
(c) the structure of the plant considering parallel units duplications and allocation of storage tanks, and unit sizes
(d) the SC structure: flows among SC nodes. 

in order to minimize the total annual cost given by fixed cost, investment cost, production cost, stock and maintenance cost, and transportation cost.

3. Model Formulation

The problem involves optimizing the SC performance simultaneously with the plant design in order to minimize the total cost. Following, the basic constraints are posed.
3.1. SC Network Constraints
These constraints are mass balances between the different nodes in the SC. Q represent total amounts, for example Qsril are the kg of r from s to l to produce i, fr the raw material conversion factor, and zil is a binary variable equal to 1 if product i is produced in plant l, and zero otherwise:
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Let ym be the binary variable equal to 1 if the warehouse m is installed, zero otherwise, and 
[image: image6.wmf]max

m

Q

 the capacity of warehouse m. 

[image: image7.wmf]maxmax

,,

   and           

ilmmmimkmm

ilik

QQyQQym

££"

åå





(5)


[image: image8.wmf]11

lk

NN

ilmimk

lk

QQ          i,m

==

³"

åå







(6)


[image: image9.wmf]1

m

N

ikimk

m

DQ           i,k

=

="

å








(7)
3.2. Design Equations
Let SVjl={VFjl1, VFjl2, …, VFjlP} be the set of available discrete sizes for stage j of plant l. p = 1,…, P represents the index for the different unit sizes. If the plant is not installed, then all the unit sizes of that plant have to be zero. Let exl be the binary variable that takes value 1 if plant l is installed, and zero otherwise, and vjlp is a binary variable equal to 1 if unit j of plant l has size p. Then, the size for unit j of plant l, Vjl, is given by:  
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 The sizing equations that relate the unit size with the batch size (Bijl) are:
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NPjl represents the number of in phase units for stage j in plant l, Nbil the number of batches of product i in plant l, and Sijl the size factor. In order to avoid no linear constraints, the binary variable xxjld is defined and it takes value 1 if stage j of plant l has d units in phase, and zero otherwise, so 
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Then, replacing Eq. (11) in Eq. (10) 
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And substituting Eq.(13) for Eq. (8) and Eq. (12) 
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With 
[image: image18.wmf]  if  and  are equal to 1

0  otherwise                            

 

ililpjld

ijlpd

Qvxx

e

ì

=

í

î





(15)


[image: image19.wmf]                         ,,,

UP

ijlpdililp

d

eQvijlp

£"

å






(16)


[image: image20.wmf]                         ,,,

UP

ijlpdiljld

p

eQxxijld

£"

å






(17)

[image: image21.wmf]1

     ,

P

ilijlp

p

Qeil

=

="

å








(18)

3.3. Timing Constraints

Let tijl be the processing time for product i in stage j of plant l, TLil the cycle time of product i in plant l, and NTjl the number of out of phase units for stage j of plant l. Then Til ≥ Nbijl TLil, represents the total time for producing i in plant l, so that
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Where xjln is equal to 1 if n out of phase units are used in stage j of plant l, and zero otherwise. In order to avoid no linear constraints, a new variable is defined as wijln = Nbil xjln, and replaced in (20).
3.4. Intermediate Storage Constraints
According to Voudouris and Grossmann (1993) the upper bound for the storage vessels can be defined by 
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STijl represents the size factor for storage tanks and sjl is a binary variable equal to 1 if a tank is allocated after batch stage j, and zero otherwise.
Let 
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be the set of available discrete sizes for the tank allocated after stage j. Let stjgl be the binary variable that takes value 1 if a tank of size g is allocated. VTFj1l is equal to zero to represent the no tank allocation. Using Eq.(11) in (21) and (22) the storage constraints are:
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Using the continuous variable fijgl=Qil stjgl, constraints (23) and (24) become linear and: 
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The bounds for number of batches can be stated by
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Where 
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 is a constant value corresponding to the maximum ratio allowed between consecutive batch sizes. The nonlinearity in these equations is eliminated with the definition of a new variable 
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3.5. Objective Function
The objective function is the minimization of the total annual cost given by fixed cost (plant and warehouse installation), investment cost (batch units and storage vessels), production cost (raw material consumption and operating cost), stock and maintenance costs, and transportation cost (between the SC nodes). 
4. Example

The example considers a SC that consists of 2 sites with 3 different raw materials, 3 possible plants with 3 stages for producing 3 products, 3 possible warehouses and 3 customer zones. Tables 1-3 show the most relevant model parameters. A set of 5 discrete sizes is provided for process units and 4 discrete sizes for storage tanks. Table 4 shows these sizes and their costs. The problem was solved with GAMS via CPLEX solver with a 0% optimality gap.
Table 1. Model parameters for the example

	Product (for all plants)
	fril
R1         R2         R3
	tijl (h)
J1          J2          J3
	Sijl
J1          J2          J3

	i1
	0.8
	0.85
	0.7
	14
	5
	7
	0.9
	0.6
	0.4

	i2
	0.7
	0.7
	0.7
	12
	6
	4
	0.6
	0.5
	0.4

	i3
	0.6
	0.65
	0.65
	16
	8
	5
	0.7
	0.5
	0.4


Table 2. Product demands (x103 kg)
	Product
	k1
	k2
	k3

	i1
	150
	200
	115

	i2
	130
	220
	130

	i3
	150
	250
	150


Table 3. Raw material availability (x103 kg)
	Sites
	R1
	R2
	R3

	S1
	3,200
	3,000
	1,950

	S2
	3,500
	3,200
	1,800


Table 4. Discrete sizes and costs of units and storage tanks

	
	Discrete units sizes (l)
	Cost 
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	Stages
	P1
	P2
	P3
	P4
	P5
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 (x 103)
L1        L2         L3
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	J1
	300
	500
	750
	1000
	1200
	6            9             5
	0.6

	J2
	300
	500
	750
	1000
	1200
	8            6             7
	0.6

	J3
	300
	500
	750
	1000
	1200
	7           10            7
	0.7

	
	Storage Tanks
	
	
	

	
	G1
	G2
	G3
	G4
	
	
	

	J1
	0
	1500
	5000
	10000
	
	0.5
	0.6

	J2
	0
	1500
	5000
	10000
	
	0.5
	0.6


The optimal solution consists in only one plant that produces the 3 products. The plant and the unit sizes are shown in Fig. 1 as well the number of batches (Nbi) and the total production (Qi). A storage tank is allocated between stages 2 and 3, that is not used by product 1. All the consumed raw materials arrive from site 1 and two warehouses are installed. In the first row of Table 5 the investment and operative costs of this optimal solution (S1) are given. In Table 6 the optimal network distribution is showed.  
The same model without consider unit duplications and storage tank allocation is solved in order to compare the significance of plant design in the overall SC problem optimization. The optimal solution for this model consists in two plants: Plant 1 produces 392,920 kg of product 2 and 480,570 kg of product 3 with unit sizes of 1200, 1000 and 750 for stages 1, 2 and 3 respectively, and Plant 3 produces 465,000 kg of product 1, 87080 kg of product 2, and 69430 kg of product 3 with unit sizes equal to 1000, 750 and 500 for stages 1, 2 and 3 respectively. In Table 5 the economical results are shown (S2). The total annual cost is equal to $1406300 representing 28.6% bigger that the optimal solution considering plant design. 
5. Conclusions
This work has proposed a MILP model for the optimal production and distribution SC problem taking into account plant design in the overall model. Unit duplication in phase and out of phase as well as the allocation of intermediate storage tank where considered, using discrete unit and tanks sizes in order to avoid nonlinearities. 

The model was applied to a SC with four echelons and compared with a model where plant configuration is not taken account. The importance of considering plant configuration has been highlighted by using an example in which considerable savings on the overall annual costs have been achieved, given not only by the investment costs but also by the SC design.
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Table 5. Investment and operative annual costs ($)

	
	Plant Investment
	Tanks
	Production
	Raw material
	Warehouse
	Transport
	Total

	S1
	519,820
	18,643
	116,200
	84,182
	109,450
	245,500
	1,093,795

	S2
	795,859
	-
	131,150
	100,200
	109,450
	269,670
	1,406,329


Table 6. SC optimal design and product distribution for solution S1 (x103 kg)

	
	From sites to Plant 1
	From Plant 1 to warehouses
	From warehouses to customers

	Products
	R1
	R2
	R3
	M1
	M3
	K1
	K2
	K3

	i1
	372
	395
	325
	465
	0
	M1:150
	M1:200
	M1:115

	i2
	336
	336
	336
	0
	480
	M3:130
	M3:220
	M3:130

	i3
	330
	357
	357
	400
	150
	M1:150
	M1:250
	M3:150
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Figure 1. Plant design and production planning  
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