18th European Symposium on Computer Aided Process Engineering – ESCAPE 18

Bertrand Braunschweig and Xavier Joulia (Editors)

© 2008 Elsevier B.V./Ltd. All rights reserved.


6

C. Solvason et al.
Visual Mixture Design Using Property Clustering
3

Visual Mixture Design Using Property Clustering
Charles C. Solvasona, Fadwa T. Eljacka,b, Nishanth G. Chemmangattuvalappila, Mario R. Edena
aDepartment of Chemical Engineering, Auburn University, Auburn, AL 36849, USA
bDepartment of Chemical Engineering, Qatar University, Doha, Qatar

Abstract

Mixture Design of Experiments (MDOE) is a tool used to determine the optimum combination of chemical constituents that deliver a desired response using a minimum number of experimental runs. While the approach is sufficient for most experimental designs, it suffers from combinatorial explosion and visualization difficulties when dealing with multi-component mixtures. The property clustering technique can be used to alleviate these problems [1,2]. The accuracy of the clustering technique depends heavily on the ability of the property operator models to adequately describe the property within the design space. This paper develops the cluster expressions for  experimentally derived Scheffe and Cox models and discusses the implications of negative regressors on the cluster design space.
Keywords:  Property clusters, mixture design, regression, reverse problem formulation
1. Introduction
The terms product synthesis and design designate problems involving identification and selection of compounds or mixtures that possess certain physical properties.  Combined with process design, these problems can be solved as reverse problem formulations [2].  Numerous contributions have been made in the development theoretical molecular and mixture property prediction models [3,4,5], however little focus has been on utilizing experimental design techniques when theoretical property prediction models are insufficient for describing the mixture’s properties. Early in experimental mixture design, Scheffe [6] and Cox [7] developed techniques to obtain empirical property operator models by utilizing simplex diagrams of the chemical constituent design space. Visualization of the problem in this manner is prone to combinatorial explosion which occurs when there are more constituents (i) than properties (k).  Visualizing the problem in the property space reduces combinatorial explosion while also offering insights into the effectiveness of the design.

2. Experimental Design
Experimental design is the process of planning and executing informative experiments [8].  The most effective choice of model and location of design points is the focus of the experimenter.  Typically, a first or second degree polynomial is selected [8]. The point estimate form of the first order polynomial model is shown in equation 1.
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(1)
The property yk is the point estimate of an unbiased estimator of the response.  ko and ki are the point estimates of the least-squares regression coefficients and represent the effect of factor i on the response k.  The total number of i factors is u.
2.1. Mixture Design of Experiments (MDOE)
MDOE is an extension of experimental design that utilizes chemical constituents as the factors in the design. By definition the constituent fractions must sum to one and each constituent fraction must lie between zero and one. This constraint imposes a colinearity effect by removing the independence of the factors. While it does not affect the utilization of the model, it does impact the interpretation of the regression coefficients. The benefit of using the constraint, however, is that it affords the ability to represent mixture data in a simplex diagram as shown in Figure 1a. Scheffe developed the first simplex-lattice designs which many researchers considered to be the foundation of mixture design [8]. To develop these designs, Scheffe [6] noted that the location of the response of a mixture made up of exactly zero constituents must be identically zero which, when combined with equation 1, results in the first order canonical model of equation 2.
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It must be noted that the modified regressors ki* are amalgams of the pure component and reference properties.  The removal of the constant term to generate the canonical model makes it impossible to center these models which often leads to an ill-conditioned XTX matrix [7,9] used in linear regression.  To address this issue, Cox [7] proposed a variable transformation with a standard reference mixture that would allow for the use of existing polynomial models.  Here the regressors better represent the effect of chemical constituent i.  The estimated response surface contours generated by the Cox polynomial and Scheffe canonical model forms are identical [8]. However, while this transformation of the original Scheffe polynomials removes the primary colinearity, it leaves the secondary colinearities derived from fitting data in constrained regions [9]. Kettaneh-Wold [9] suggests that the best solution may be to refrain from interpreting the coefficients and rely on the predictions only but notes this solution is not acceptable in practice since the interpretation of regression coefficients is a necessity in screening situations.  
3. Property Clustering

Property Clustering is a technique that converts properties into conserved surrogate clusters that are described by property operators, which have linear mixing rules, even if the operators themselves are nonlinear [1,2]. The technique offers design visualization benefits for systems described by three properties (k = 3). First, the experimental design points on which the model is based can be mapped into the property cluster space to determine if the feasibility region is completely explored as shown in Figures 1b and 2a. This visualization technique is effective regardless of the number of components investigated. Second, visualizing the problem in property space consolidates each components effect on the mixture, aiding in the ability to screen components. The key to the accuracy of the method is the prediction accuracy of the property operator models. For mixture design, either Scheffe canonical models or Cox polynomial models can be used.  
3.1. Scheffe Canonical Models
The cluster definition of the Scheffe canonical model is shown in equation 3.  

[image: image3.wmf](

)

(

)

ref

k

ki

ki

y

y

b

y

*

=

W


(3)
Once in this form, the model can be directly implemented in the clustering framework. Unfortunately, the same is not true for the visualization of the solution. Since regressors may be either positive or negative, then it follows that the property clusters may also be positive or negative. In Figure 2b a ternary cluster diagram containing property models with negative regression coefficients is shown. In the situations with negative regression coefficients, the combined effect of the component resides outside the ternary diagram in a region defined as negative cluster space. Including the case where all properties P are negative, the total number of negative cluster regions is NR,  
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where the number of different types of regions NT is equal to number of properties. While a negative regression coefficient may create a negative property operator, the advent of such constructs must be constrained by the following rule to ensure inter-stream conservation is met:  

Rule 1. The Augmented Property Index (AUP) values of the components must be positive.

Rule 1 is achieved by the adjusting the reference values of the properties. Although the adjusted references give different values for the clusters, the underlying property values are unchanged.  
3.2. Cox Polynomial Models

The above discussion is a valid solution for mixing and developing lists of candidate solutions.  However, since the objective of a screening design is to also understand the effects of the constituents on the mixture, then the component cluster needs to represent the effect of chemical constituent i on the property void of colinearities.  One method for removing the colinearities is to utilize the Cox modifications on the Scheffe canonical models.  It has been shown that the response surfaces for the Scheffe and Cox models are identical [8]. This result is also true of the property clustering solutions utilizing the Scheffe and Cox models. Noting that the response at the standard mixture is equal to the o regressor, then the property operator expression is,
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where ys is the response at the standard mixture and yz is the pseudo property value that represents the property, k, contribution to the mixture.  Normalizing the property operator expression according to the clustering definitions [1,2,3] results in equation 6.
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Redefining the property cluster in terms of the pseudo property cluster Ckz and the standard property cluster Cks yields equation 7.
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The sum of these clusters will not give the true cluster, Ck, as defined by Shelley and El-Halwagi [1], without correcting for the different AUP values. This is done using a set of correction factors.
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Fz is the pseudo correction factor and Fs is the standard correction factor. These are combined in equation 9 to give the relationship between the true property cluster, the pseudo property cluster, and the standard property cluster. Fz is the pseudo correction factor and Fs is the standard correction factor.  
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The rules governing the interpretation of the cluster points in the property cluster space are listed as follows:
Rule 2. The visual distance from the standard reference mixture to a component cluster point is indicative of the relative magnitude of the components effect on the response.  

Rule 3. If the constituents lie on opposite sides of a line which passes through the standard reference mixture, then the constituents are said to be inversely related.  
4. Case Study – Polymer Blend for Spun Yarn
The case study used to highlight this methodology is the development of a polymer blend of spun yarn for marine applications.  The three properties evaluated were thread elongation, knot strength, and density.  Four components were evaluated using a simplex lattice design of 10 experiments.  Data for components i = 1, 2, 3 (low density polyethylene (LDPE), polystyrene, and polypropylene) were compiled from Cornell [8].  Data for a fourth component i = 4, Nylon 6,6, was collected from Rodriguez [10]. Using linear regression, first degree Scheffe and Cox models were developed for thread elongation and knot strength properties. For the third property, density, a previously developed pure component property operator model was utilized [2]. Regressors for the two model types are found in Table 1.  A simplex of the first three components using traditional mixture design visualization techniques is presented in Figure 1a. Each of the three properties is mapped to the design space along with the feasibility region which is set by product targets. The quantification of the effect is difficult to interpret since the data is spread out over several figures.  To circumvent this combinatorial explosion and to provide an easier method for examining the impact of components on all the properties simultaneously, the design is analyzed using property clustering.  The resulting property clustering diagram is shown in Figures 1b and 2a with the vertices representing each of the three properties in their cluster forms. The clustering diagram indicates that the third chemical constituent, polypropylene, is closest to the feasibility region, followed by Nylon 6,6, polystyrene, and then LDPE.  It is clear that the addition of polypropylene to a hypothetical target mixture will do little to change the properties of the mixture, suggesting it should be used as a filler.
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Table 1:  Scheffe and Cox model regression coefficients.
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Figure 1:  (a) One of the 3 required simplex diagrams for the case study [8], (b) The single property clustering diagram of the case study using Scheffe canonical models.
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Figure 2:  The clustering diagram of the case study showing (a) the highlighted region of the Scheffe canonical model and (b) the Cox polynomial model in negative cluster space.
Of the three remaining polymers, LDPE appears to have the largest impact on the mixture properties. However, since the properties of Figure 1b and 2a were derived using Scheffe models, inherent colinearities exist. Converting the Scheffe canonical models to Cox polynomial models with a standard reference mixture at location (0.653, 0.173, 0.173, 0.083) removes the primary colinearity resulting in a better visualization of the effect of component i.  Figure 2b illustrates the standard and pseudo clusters. Here it is confirmed that polypropylene has the smallest effect on the combined mixture properties. However, by removing most of the colinearity in the model, the result now clearly shows that polystyrene has the strongest effect on the combined mixture properties.  It also shows that polystyrene and LDPE have inverse effects, a result not clear in Figure 1.  Evaluating the placement of the experimental design points in the property cluster space also offers insights into the design. In Figure 1b and 2a the experimental design points are translated to the property cluster space. A single experiment consisting of an equimolar tertiary mixture falls within the feasibility region.  Unfortunately, the rest of the design points outside the feasibility region and none of the candidate mixtures fall between the design points. This is the same inference made when investigating Figure 1a. This means that to obtain the candidate solutions via linear mixing the property operator models must be extrapolated, which introduces unneeded error into the solution and suggests an insufficient design. To prevent this situation, the design points should be repositioned so that they cover the feasibility region. The procedure for executing the repositioning must take into consideration the increase in accuracy of the property space at the expense of the optimality of the component space. The added benefit by viewing the design in property space is that the points may always be viewed on a single diagram, regardless of the number of components studied as long as the number of properties measured is three or less. In cases when three or more properties are studied, additional diagrams may be used or algebraic methods applied [5].
5. Conclusions

In this work, a systematic property based framework for evaluation of mixture design problems using property clustering has been presented. Specifically, the property clustering framework has been extended to include clusters of experimentally derived property operator models of Scheffe [6] and Cox [7]. When interpretation of the chemical constituent’s impact on the mixture property is warranted, Cox derived clusters are utilized such that the location of the pseudo chemical constituent relative to the standard reference mixture is indicative of its impact on the mixture’s properties. The accuracy of the design is visually observed by placing the design points in the property design space. A significant result of the developed methodology is that for problems that can be satisfactorily described by just three properties (k = 3), the experimental mixture design problems can be analyzed visually on a ternary diagram, irrespective of how many chemical constituents are included in the search space. However, algebraic and optimization based approaches can easily extend the application range to include more properties. Future efforts are focused on applying this novel methodology to reverse problem formulations of multivariate mixture and molecular design problems.
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