18th European Symposium on Computer Aided Process Engineering – ESCAPE 18

Bertrand Braunschweig and Xavier Joulia (Editors)

© 2008 Elsevier B.V./Ltd. All rights reserved.


4

S. Piana et al.
Computer Aided Operation of Pipeless Plants

5

Computer Aided Operation of Pipeless Plants
Sabine Piana and Sebastian Engell
Process Dynamics and Operations Group, Department of Biochemical and Chemical Engineering, Technische Universität Dortmund, 44221 Dortmund, Germany
Abstract

Pipeless plants are a new production concept in which automated guided vehicles transport the substances in mobile vessels between processing stations. Since several batches are produced in parallel, decisions have to be made on the scheduling of the production, on the assignment of the equipment and on the routing of the vessels. This paper describes the combination of an evolutionary scheduling algorithm with a simulation-based schedule builder. The new algorithm yields up to 16 % better solutions than an as-soon-as-possible scheduling heuristic.
Keywords: Pipeless plant, evolutionary algorithms, simulation, scheduling.
1. Pipeless Plants
Pipeless plants are an alternative to traditional multiproduct plants with fixed piping. Their distinctive feature is that the processing steps are performed at fixed stations and the substances are moved around in mobile vessels by automated guided vehicles (AGVs). The recipes determine the order in which a vessel must visit the different stations. The cleaning of the vessels is carried out in separate cleaning stations and the stations are cleaned in place. Pipeless plants offer a high degree of flexibility, e. g. by enabling a change of the priorities of the orders or the bypassing of a blocked station. The reduction of fixed piping results in up to 20 % less time for cleaning and sterilizing when a product changeover occurs compared to conventional batch plants [1].
Under the simplifying assumption of fixed and known processing times for the steps of the recipes, the optimal scheduling of a pipeless plant can in principle be determined by mixed-integer linear programming. However, due to the presence of the spatial dimension of the problem (the movement of the vessels in the plant, collision avoidance of the AGVs, parking of vessels in different locations that lead to different travel times), an exact solution is currently infeasible for realistic problem sizes. The option which we pursue in this paper is to combine a detailed simulation with embedded heuristics and routing algorithms of a pipeless plant with an optimization algorithm that determines the optimal sequence of processing steps. As evolutionary algorithms (EAs) can embed simulations as black-box computations of cost function values, we use an EA for the optimization. The EA only handles a subset of the degrees of freedom (the sequencing decisions), and the simulation algorithm takes the role of a schedule builder that generates a full schedule using additional information and heuristics.
The paper is structured as follows. The next section describes the inter-dependent decision variables that have to be determined during the operation of a pipeless plant. Section 3 motivates and describes the use of an EA for the scheduling of the steps of the recipes. Special attention is paid to the handling of infeasibilities by repair algorithms and the evaluation of the individuals by the schedule builder in Sections 4 and 5, respectively. The results of the algorithm for three example problems are described in Section 6 and the paper concludes with an outlook to further research.
2. Problem Statement and Previous Work
The increased flexibility of a pipeless plant comes at the expense of a higher degree of complexity. Knowing the product demand, the number and size of the batches, the recipes and the plant layout, our objective is to find a schedule with minimum makespan that is feasible with respect to a set of constraints.

1. A schedule must guarantee that the steps are executed according to the sequence prescribed by the recipes.
2. Each recipe step must be assigned to a vessel, an AGV and a station. The chosen equipment must be available at the desired time and has to be able to perform the required operations, i.e. to possess the necessary technical functions.
3. After the assignment, the selected AGV must pick up the vessel and transport it to the selected station. The AGVs must not collide with each other during transports.
The time that a recipe step needs for its execution at a station may depend on the initial state of the material in the vessel. The mass and the temperature of the content of a vessel are therefore included as state variables in the simulation model.
The scheduling of the recipe steps is the most important decision. It has mostly been tackled by mixed-integer linear or nonlinear programming. These methods have been combined with other techniques, for example with a discrete event simulator [2], with a queuing approach [3], or with constraint programming [4], to find optimal schedules. The operation of a pipeless plant can be modeled using different degrees of accuracy. In [4] it is assumed that the vessels possess their own transportation device. Then the assignment of a vessel to an AGV is not necessary. Also fixed travel times and fixed paths of the AGVs are assumed. Furthermore, the durations of the processing steps are assumed to be deterministic. In contrast to [4], in [1] a modeling and simulation software that represents the pipeless plant and the chemical processes in a detailed fashion is described where the problems mentioned above are solved simultaneously by heuristic algorithms. Shortest paths for the AGVs are calculated using the A* algorithm, path conflicts are resolved by a first-come-first-serve (FCFS) scheme and a production schedule is determined by an as-soon-as-possible (ASAP) heuristic. In this paper, we continue the detailed model in [1] with an evolutionary optimization algorithm.
3. Evolutionary Scheduling Algorithm
An EA works with a set of candidate solutions to the optimization problem. A solution is referred to as an individual and a set of µ solutions is called the population. Each individual has a fitness value which shows how good the solution is with respect to the objective function. λ new individuals are added to the population by recombination and mutation of existing individuals. The idea is that the new individuals inherit good characteristics from the existing individuals. The λ worst solutions are removed from the population. After several iterations, which are called generations, the algorithm provides a population that comprises good solutions.

In our case, the EA generates individuals which represent a fully ordered sequence of the recipe steps of all batches. To evaluate the fitness of the candidate solutions, the assignment of the equipment, the routing of the AGVs and a calculation of the durations of the recipe steps are carried out by the simulation algorithm of [1]. The recipe steps are identified by their batch IDs to maintain precedence relations in the recipes when steps are exchanged during recombination and mutation. Fig. 1 shows the idea by means of a small example. The order of the sequence indicates the priority of the recipe steps. Each entry directs the simulator to schedule the first unscheduled step of the corresponding batch as soon as possible without delaying higher-priority steps.

[image: image1.wmf]
Fig. 1: Representation of an Individual

Since each batch ID must occur a certain number of times (as often as the number of recipe steps of the batch), a recombination operator that preserves permutations is applied. The two best individuals out of a set of randomly chosen individuals are selected from the population. Then a random segment is copied from the first individual into a new individual. The missing elements are filled with the entries of the second individual. The newly generated individual is then subject to mutation with a probability p. By mutation, two randomly chosen entries are exchanged.

4. Handling of Infeasibility

There are several reasons for infeasibility of new individuals. Precedence violation in a recipe is avoided by the chosen representation of an individual. However, it is possible that a recipe step cannot be scheduled at its position in the sequence because no suitable station or empty vessel are available. We could deal with this infeasibility inside the simulator by postponing the currently infeasible recipe step and continuing with the next recipe step in the sequence. Alternatively, the infeasibility can be removed before passing the individual to the simulator. This is done by a repair algorithm that employs problem-specific knowledge on recipes, vessels and stations. We chose the second option since the repair algorithm can be designed to maintain the priorities of the recipe steps to a larger degree than by postponing infeasible assignments.
The repair algorithm for occupied stations is explained by the example individual in Fig. 2. Suppose that there are only two charging stations in the plant. After the fourth recipe step (charging batch 3) both charging stations are occupied by batch 2 and batch 3. Therefore it is impossible to execute the next step (charging batch 4). A charging station must be freed first. The first recipe step in the sequence that frees such a station is the seventh entry (heating batch 3). By inserting this step before the currently infeasible step, batch 3 is moved from the charging station to the heating station and batch 4 can be processed. It must, however, be checked that a heating station is available at this point. If not, another repair is needed.
It may also happen that there is no free vessel available to start a new batch. The repair algorithm moves all recipe steps of the batch which can currently not be started to a position after a batch has been finished and thereby frees a vessel. Note, that entries of the batch which occur behind this position, are not moved forward as this would violate the specified order of the priorities. 

[image: image2.wmf]
Fig. 2: Repair Algorithm for Occupied Stations

5. Evaluation of Individuals

The software PPSiM (Pipeless Plant Simulation [1]) provides an environment to model a pipeless plant in a fast and intuitive manner and to perform simulation studies to compare design alternatives. The routing of the mobile vessels as well as variable durations of the processing steps are taken into account during the simulation. The program generates a production schedule according to a simple ASAP heuristic in which the recipe steps are scheduled in a chronological order according to their earliest possible start times. The solutions can be visualized as Gantt charts.

The EA is embedded into PPSiM to perform an optimization of the decision variables. It interacts with the simulator in two ways. First, the simulator computes the ASAP solution. The initial population of the EA consists of multiple copies of this solution and other random solutions. Secondly, the simulator maps the sequence of recipe steps proposed by the EA into a feasible schedule and evaluates its fitness. The framework is shown in Fig. 3 where it can be seen which tasks are accomplished by the graphical interface, the simulator and the optimizer.
[image: image3.wmf]
Fig. 3: Simulation Optimization with an Evolutionary Scheduling Algorithm

6. Experimental Results

This section reports on the experimental results that were obtained with the proposed approach on three case studies: a small problem, an industrial problem and a problem from the literature. In the small problem, two batches of a first product and two batches of a second product have to be produced. There are two AGVs, three vessels and one station for each of the technical functions required by the recipes. The problem is simple since neither timing constraints such as different starting times or deadlines nor much potential for routing conflicts are present.
The second case study is an industrial problem. The plant under consideration produces a set of consumer care products. 7 batches of the same product and of the same sizes have to be produced. All batches can start at the same time. The underlying process is a mixing process in which various substances are charged and the material is mixed, heated and cooled. The production recipe defines 12 steps and has a linear structure. After the production process, all products have to be stored to determine the product quality by a laboratory analysis. Then the content is discharged (packed) and the vessel is cleaned. The plant area is divided into a production area, an intermediate storage and parking area, a discharging area, and a cleaning area. The production stations are arranged in a clockwise order to minimize the probability of collisions during the execution of the recipes.
Finally a plant with a herringbone layout taken from [4] is treated. The authors of [4] assume that the recipe steps have fixed processing durations and that the AGVs move on specified paths with fixed transfer times. Thus, a detailed simulation of the processing steps and the routing of the AGVs are unnecessary. A difference to our simulation model is that the authors assign buffers to the stations at which AGVs can wait. It is possible to use these buffers as parking positions for empty and for clean vessels. We modeled the example without these buffers and instead defined parking positions at the side of the plant layout. To be able to compare the results, we subtract the time needed for these additional transfers from the makespan. This corresponds to 18 minutes per batch.
Table 1 shows the relative improvement obtained by the proposed EA on the initial ASAP solution. The parameters of the EA were set to μ=10 and λ=2. The probability of a mutation was 80 %. The results are reported for a set of five runs with a time limit of 60 seconds. It can be seen that the improvement for the simple problem is larger than for the industrial problem. The best solutions for the simple problem do not run many batches simultaneously. It is a weakness of the ASAP solution to start too many batches at once. Thereby vessels are blocking each other and stations can be occupied only later in time. For the industrial problem, however, it seems that the ASAP solution is already a good schedule so that the EA cannot improve it much. We suppose that this is due to the plant layout which minimizes the probability of collisions.
Table 1. Improvement obtained by the Scheduling EA within 60 seconds
	
	Best run
	Worst run
	Median run

	Simple
	-16.3 %
	-15.4 %
	-16.1 %

	Industrial
	-2.4 %
	-0.0 %
	-1.0 %

	Herringbone
	-4.8 %
	-3.9 %
	-4.5 %


For the third example, our algorithm is compared to the results of the authors of [4] who solve the scheduling and sequencing problem by constraint programming (CP). It can be seen in Table 2 that it takes slightly more time to compute the heuristic ASAP solution than to find the first feasible solution by CP, but that the ASAP solution has a significantly smaller makespan. The EA improves the initial solution in less than half a minute to a solution which is very close to the optimum.
Table 2. Comparison for the Herringbone Layout
	
	EA
	CP

	
	CPU time1
	Makespan
	CPU time2
	Makespan

	First solution
	1.97 sec
	46680 sec
	0.1 sec
	63720 sec

	Best solution (Best run)
	25.5 sec
	44444 sec
	722.6 sec
	44280 sec

	Best solution (Worst run)
	10.5 sec
	44844 sec
	
	


1: Pentium 4, 3 GHz, 512 MB RAM
2: P3500 MHz

7. Conclusion and Outlook

Pipeless plants are an interesting alternative to standard multiproduct plants due to their flexibility and the potential to decrease the makespan of a production plan significantly. The optimization of a pipeless plant is treated in a hierarchical way. An EA schedules the production steps and a simulator with heuristics for the assignment of the equipment and for the routing of the AGVs is used as the schedule builder. In examples, the new scheduling procedure decreased the makespan by up to 16 % compared to a heuristic solution. For a problem from the literature we found a good first solution and the EA quickly returned a solution that is very close to the optimum. Our approach is therefore suitable for online applications where the fast computation of a good feasible solution is of prime concern.
The simulation of the transfers is the most time consuming step in our approach. Many AGV paths have to be generated and eventually to be modified. In the future we plan to work with approximations to decrease the calculation time and to steer the algorithm more efficiently to good solutions. This can be done by evaluating the individuals exactly only after several generations of the algorithm. This may, however, result in infeasible individuals whose fitness is overestimated. An approach that circumvents this problem was proposed by [5] where the authors advise to evaluate the individuals first by an approximated simulation. Only promising individuals are then evaluated by the exact simulation. Individuals that are estimated to be of low quality are directly eliminated. Both schemes cause an uncertainty in the cost function of the EA. The trade-off between the precision of the evaluation of the cost function and the computation times will be investigated in future work. In addition, it will be investigated whether the assignment of the equipment to the steps of the recipe can also be improved with reasonable computing times by using a second embedded EA for this task.
References

1.
A. Liefeldt, 2008. Logistic Simulation of Pipeless Plants. In: S. Engell (Edt.), Logistics of Chemical Production Processes, 1st edn, Wiley VCH Verlag GmbH.
2.
R. Gonzalez and M. Realff, 1998. Operation of pipeless batch plants – I. MILP schedules. Computers & Chemical Engineering 22 (7-8), 841 – 855.

3.
D. Yoo, I.B. Lee and J. Jung, 2005. Design of Pipeless Chemical Batch Plants with Queueing Networks. Industrial & Engineering Chemistry Research 44, 5630 – 5644.
4.
W. Huang and P. Chung, 2005. Integrating routing and scheduling for pipeless plants in different layouts. Computers & Chemical Engineering 29, 1069 – 1081.
5.
J. April, F. Glover and M. Laguna, 2003. Practical Introduction to Simulation Optimization. Proceedings of the 2003 Winter Simulation Conference.


































































