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Abstract

We present a novel approach to Model Predictive Control problems, which combines a model reduction scheme coupled with parametric programming. Balanced Truncation is used to first reduce the size of the original Model Predictive Control formulation, while multi-parametric programming is employed to derive the parametric control laws off-line. The theoretical developments are presented with an example problem.
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1. Introduction
Multi-parametric programming [1] has recently received a lot of attention in the open literature, especially because of its important applications in Model Predictive Control (MPC) [2]. In this context, a new class of controllers, the so-called parametric controllers has been invented [3] which allow for the off-line derivation, hardware implementation and installation of Model Predictive Control [4].
While the advantages of parametric controllers are well established, a key challenge for their wider applicability is the ability to derive parametric controllers from arbitrary large scale and complex mathematical models. In this context, Model Order Reduction [5] can be a useful tool, since it could lead to an approximate model of reduced size, and complexity and of sufficient accuracy.

In this paper we present a Model Reduction technique incorporated with multi-parametric programming and control, namely Balanced Truncation (BT). The use of Balanced Truncation eliminates a number of states of dynamic linear systems, while a bound on the maximum error obtained for the output vector can be established.  This then allows for the derivation of (approximate) linear parametric controllers, which can be tested and validated (against the original high-fidelity model) off-line. These theoretical developments are presented next.
2. Balanced Truncation in Multi-parametric programming and control
Balanced truncation is one model reduction technique, which is particularly suitable in the context of state-space dynamic models, linear Model Predictive Control and Multi-parametric controller design, as discussed in the following.

In Eq. (1) we present the mathematical formulation of the MPC problem we aim to solve. Given Eq. (1), we first seek to use balanced truncation to reduce the size of the model, and then solve the reduced control problem via our multi-parametric programming and control methodologies. The derived parametric controller can then be validated against the original, full space model.
2.1. Balanced truncation in Multi-parametric programming and control
We consider the following formulation in discrete time and linear form, already recast as a mp-QP problem (See [6]):
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Where the initial state x(t) corresponds to the vector of parameters in the multi-parametric programming framework. Balanced truncation is then applied to Eq. (1). We work with the dynamic system (xt+k+1|t = Axt+k|t + But+k; yt+k|t = Cxt+k|t) and seek to find a transformation T such that the transformed system is balanced. Following the procedure as described in [5], we describe the dynamic system in an equivalent balanced form:
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For convenience, we write TAT-1 as Ab, TB as Tb and CT-1 as Cb. We incorporate (2) in (1) and hence convert into the transformed state 
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: for matrices K, P, Q and V in Eq. (1) we substitute x for T-1
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 resulting in matrices Kb = KT-1, Pb = 
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QT-1 and Vb = T-1V, respectively (where superscript b denotes balanced realization of the corresponding matrices obtained after this step). For simplification, we rewrite Eq. (1) as follows:
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(3)
Note that in Eq. (3) the parameter space has also been transformed. In the next step, we partition the vector 
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 such that 
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 comprises the first p (the order of the reduced model) components of
[image: image13.wmf]x

. The matrices in Eq. (3) are also partitioned according to the partition of the state vector. The reduced order problem can then result from the deletion of the last n-p states, 
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, and the corresponding matrix blocks, as follows:
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(4)
Note that Eq. (4) is not exactly equivalent to either Eq. (1) or Eq. (3): information on the dynamics is lost during the balanced truncation step. There is an “inherent” error in the calculation of the output vector y: even though a feasible solution may be obtained from the reduced problem, this may actually lead to constraint violations of the original problem. We consider here two ways to deal with this problem: (i) neglect the output bounds and keep only the input bounds; (ii) update the output bounds in order to ensure feasibility of all output solutions. These are presented next.

2.1.1. Recasting option I: neglect output constraints

Neglecting the output constraints will lead to a controller which is driven only by states stabilisation. In this case we keep only the constraints on the inputs as they are the same of the original problem. This type of control can be used whenever we do not have hard constraints. The main drawback of this is the loss of one of the most important features of MPC: the ability to deal with all types of constraints.
2.1.2. Recasting option II: update the output bound
The second approach we consider here consists of updating accordingly the bounds of the outputs in order to ensure feasibility as follows. Given bounds on the output, ymin ( y ( ymax, these bounds are updated based on the output error according to the magnitude of the control input as follows [5]:
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Where k corresponds to the singular values of the neglected states. Through  Eq. (5) one can compute the maximum error, , on output y, as:
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We can then update the bounds on the outputs by further restricting the bounds on y as follows:
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Eq. (7) will ensure that feasibility of the outputs is obtained regardless of the error on the outputs.
2.2. mp-QP formulation
Using the state model (xt+k+1|t = Axt+k|t + But+k) we can proceed to convert Eq. (4) by updating the bounds on y (using either Eq. 7 or neglecting the output constraints), thereby recasting the MPC framework in a way that all future states are eliminated, as follows:
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Note that only inputs vector U =  [utT, …, ut+N_u-1T]T contain the optimisation variables where 
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 provides the initial conditions for the states, which are the parameters in the multi-parametric programming framework. Finally, using the transformation of variables z = U + H-1FT
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 (t), Eq. (8) is converted into the mp-QP problem, as follows:
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The solution of Eq. (9) results in a set of parametric control laws valid in convex critical regions (the so called critical regions). An algorithm for the solution of Eq. (9) can be found in [1] or [7].
The algorithm has been implemented in MATLAB. A full example is presented next to simply illustrate its key steps and features. Detailed computational results and other examples are given elsewhere [8].
3. Example
A random state-space system was generated in MATLAB. It consists of n = 10 states, m = 3 inputs and o = 3 outputs.  We choose a small model for which the parametric controller can be derived for the original model; based on this solution we can then validate the solution of the controllers obtained from the reduced problems.
Matrix A will not, in general represent a continuous stable system. Matrix A is stabilized and the model is then discretized, through the use of a time step (t = 1). In general, this step has to be as small as necessary to guarantee an accurate description. We perform a second discretization with t = 0.01 for simulation purposes, which we will use to test the performance of the obtained controllers. For the present control problem we considered the following bounds: (-2,-2,-2)T ( u ( (2,2,2)T; (-10,-10,-10)T ( y ( (10,10,10)T. We defined the parameter space so that: (-2, -2, …, -2) T ( x ( (2, 2, …, 2)T.
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The methodology was applied for p=10 (original size), p=6 and p=3. The first recasting option for the output bounds - deletion of the output constraints is presented here. We selected a time and control horizon with three steps. The parametric solutions, including both the set of critical regions and the associated parametric laws were obtained for each case. In order to test the performance of each controller, we simulated the behaviour of the system using the full descritized model with t = 0.01, starting from an initial perturbed state x = [1,1,… ,1]T. The aim of the controller is to drive the states to the origin. We simulated each of the controllers and the open loop responses for a total of 30 time steps. Fig. 1(A) shows the open loop response.
Figure 1: Dynamic responses of the model used (A – open loop; B – controlled with p=10; C – controlled with p=6; D – controlled with  p=3)
In Fig. 1(B) one can observe that the parametric controller of order p = 10 improves the response when compared with the open loop response, as expected for this class of full-scale parametric controllers. For order p = 6 (Fig. 1(C)), there is an initial strong response from the controller which makes its performance of inferior quality by comparison to cases A and B. Nevertheless, it stabilizes the states. However, controller p=3 (Fig. 1(D)) shows a poor performance as a consequent of significant model reduction.

While a controller based on reduced model of order p = 6 captures the significant dynamic information and enables stabilization of the perturbed state, in the case of reduced model of order p=3, important information is lost and the controller is not capable of stabilizing the states. Hence, the controller based on p=3 is rejected.
4. Concluding remarks

We have presented a systematic procedure to derive parametric controllers based on (i) reduction of the original MPC model by the use of Balanced Truncation, and (ii) application of our multi-parametric programming and control toolbox [7].
Critical issues, which we have attempted to address in this paper and are subject of further developments at Imperial College include:

· Controlling the error in the output constraints

· Guarantee feasibility of all constraints for all parameter realization

· Establishing equivalence between original and transformed problem

· Identify the most suitable model reduction scheme for a wider class of models and applications
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