18th European Symposium on Computer Aided Process Engineering – ESCAPE 18

Bertrand Braunschweig and Xavier Joulia (Editors)

© 2008 Elsevier B.V./Ltd. All rights reserved.


6

A.Matos et al.
Integration of EPC and SPC in Pulp and Paper Industry

5

Integration of Engineering Process Control and Statistical Control in Pulp and Paper Industry
 MACROBUTTON  AcceptAllChangesInDoc Ana S. Matos, José G. Requeijo, Zulema L. Pereira 
Dept. Mec & Ind Eng and UNIDEMI, Faculty of Science and Tecnology, New University of Lisbon, 2829-516 Caparica, Portugal
Abstract

The main goal of this article is to present a methodology and a framework that is able to bring together two important concepts: Engineering Process Control (EPC), which was developed by process engineers to achieve short time control, and Statistical Process Control (SPC), conceived and implemented by statisticians and quality managers for attaining medium and long term control. The integration of both concepts can represent a breakthrough in the final product performance, by creating the necessary conditions to decrease the variability of quality characteristics both in the short and long term. The integrated methodology was designed for the pulp and paper industry and was established in several phases. First, a mathematical model was developed to represent as much as possible the process dynamic behaviour. The transfer function obtained was then used to implement two components of the above mentioned concepts, namely controllers, based on the minimum variance criterion, and statistical control charts. At last, the two components were integrated into the process, which was submitted to several disturbances to ascertain the control achieved with the integration. The methodology was tested in a real industrial process of one of the most important pulp producers in the world and considered several scenarios. To illustrate the methodology, we present one of the scenarios that shows the benefits of EPC/SPC integration. Through the application of the developed methodology to real data, process engineers at the company are now able to use a valuable decision making tool when the production process is affected by certain disruptions, with obvious consequences on product quality, productivity and competitiveness. 
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1. Introduction
Continuous improvement of any process requires reduction in the variability around the target value of its parameters. Traditionally, two different approaches have been used to accomplish this goal: Engineering Process Control (EPC) developed and employed by process and control engineers and Statistical Process Control (SPC), used by statisticians and quality engineers. Until recently, the main reason for keeping these two concepts separate was the different view each of them had about an industrial process. While SPC monitoring procedures seek to reduce the output variability by detecting and eliminating assignable causes of variation, EPC is usually applied to minimize the output variability by making online adjustments of one or more process inputs on a regular basis.

The first attempts to integrate EPC and SPC appeared long ago, with the work of Barnard (1959). Using the machine-tool case study, the author demonstrated that automatic control and statistical control can be used in parallel.
The first approach of integration presented to the statistical community was developed by MacGregor (1988), who suggested the use of control charts for monitoring the behaviour of a process under EPC. Inspired by the work of MacGregor (1988), several other authors became notorious in the field, leading to different approaches that reveal two great concerns associated with this type of integration:

· Identification of the variables that must be monitored: if only output variables (quality characteristics), input variables (adjustable variables) or both of them;

· Decision on whether to use automatic or manual controllers, the latter being or not constrained by statistical control; such decision would depend on adjustment costs and type of adjustment. 
The first approach that explicitly combines SPC with EPC was proposed by Vander Wiel et al. (1992) under the name of Algorithmic Statistical Process Control (ASPC). Following the same philosophy of ASPC, other reference studies emerged, such as Montgomery et al. (2000) and Huang and Lin (2002), among many others. An innovation introduced to the ASPC approach was the use of control charts applied to adjustable variables; the joint monitoring of input and output variables (using different control charts) was presented by Messina et al. (1996) and was followed by Tsung and Tsui (2003).

Within a slightly different context, a third approach appears which considered the existence of adjustment costs. The implementation of control charts acting as a “supervisor” of the control actions was the way found by several authors to minimize adjustment costs (e.g. Box and Luceño, 1997 and Ruhhal et al., 2000).

Recent years have witnessed the appearance of several research studies in this field. However, there have been scarce publications using real production data and demonstrating the practical application of the integration. This article tries to fill this gap, as it gives an example of integrated EPC/SPC applied to a real and complex continuous process. This new development was carried out in cooperation with a large paper and pulp production plant in Portugal, which is one of the most important producers in the world. 
2. Development of an EPC/SPC Integration Methodology
This article summarises an integrated EPC/SPC methodology developed by Matos (2006) as a doctoral research project. The main goal was the development of a methodology that could be tested and applied to a real case study. Additionally, it should also be adjustable to other industrial processes with similar technical requirements. 
Once the pulp production process is well understood, the first step is to characterize the methodological “hardware” and “software” elements that will be part of the integrated EPC/SPC. Within this work, the term hardware is used to describe the more physical elements, such as the mathematical model, the controllers and the control charts. On the other hand, the software is related to the rather intangible elements, namely the intervention criteria, the type of disturbances (for testing purposes) and the performance measures. The intervention criteria will constrain the rule to be applied by the controller and the control chart, as well as the way they interact in the integration. Altogether, the software elements allow the evaluation and comparison of different integration scenarios. 
As Figure 1 shows, the main stages of the proposed methodology are the preliminary data analysis, the identification of all process variables (outputs, inputs and disturbance variables), the transfer function model (i.e. the mathematical model that describes the process behaviour), the controllers (based on the minimum variance criterion) and, finally, the univariate and multivariate control charts (designed to be applied to auto-correlated data). 
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Figure 1 – The main stages of the integrated EPC/SPC methodology 
2.1. Case Study – Pulp and Paper Industry
The case study presented here deals with a pulp and paper production process. The plant produces Bleached Eucalyptus Kraft Pulp, using the ECF process (Elemental Chlorine Free). The Kraft pulping process is performed in two different phases, which influence the final pulp quality: the cooking process of wood chips (eucalyptus globules) followed by the pulp bleaching. The cooking process is the phase that most contributes to the preservation of the main pulp characteristics, which, in turn, will ensure high quality paper.
The viscosity of the bleached pulp, among other quality characteristics, constitutes one of the most important control parameters; the viscosity value depends, to a great extent, on the cooking process carried out in two continuous digesters working in parallel.

After understanding the MO (modus operandis) of the bleached pulp process, the main input variables (which are measured in the digesters) were identified (Table 1). 
Table 1 – Input variables and symbols 
	Temperature Variables
	Symbol 
	
	Concentration Variables
	Symbol

	Temperature in C4 zone 
Temperature in C5 zone
Temperature in C6 zone
Temperature in C8 zone
	TemC4

TemC5

TemC6

TemC8
	
	Active-alkali
Sulphur index
Top black liquor
White liquor C4
White liquor C8
	AA

SI
TBL
WLC4
WLC8


The present study considered four production periods with stabilized operational conditions (3 temporal data windows for estimation and 1 for validation). The samples were collected every 4 hours for both input (Table 1) and output (viscosity) variables. 
2.2. Model Fitting

After the preliminary data analysis, a satisfactory Box-Jenkins transfer function model was developed to describe, as much as possible, the dynamic behaviour of the bleached pulp process. The methodology used to obtain the transfer function model was carried out in three phases, as follows:

· 1st phase: fitting of several single-input single-output (SISO) transfer function models to identify possible relationships between input - output variables. 
· 2nd phase: merging of the three data windows with the goal of obtaining a better profile of the bleached pulp process; the 1st phase was then repeated.
· 3rd phase: development of a multiple-input single-output (MISO) transfer function model using the results of the 2nd phase. 
The obtained model, which was developed using the Toolbox System Identification from MATLAB® software, explained 42% of the total data variation within the observation period:
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In the previous equation, yt is the deviation of viscosity from target at time t, (t is the white noise sequence and 
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defines the backshift operator. WLC8, SI, WLC4, TemC4, TemC5 and AA represent the variables of Table 1 in digester 1 (D1) and digester 2 (D2). 
The fitted model was successfully validated utilizing the data of the 4th window established for that purpose. Such mathematical model is the first “hardware” element and is the foundation of the complete methodology developed in the research. 

2.3. Engineering Process Control and Statistical Process Control

According to Figure 1, once the mathematical model has been defined, the study carries on with the definition of the other hardware components: controllers and control charts.

The integrated control strategy used manual controllers constrained by the control chart decisions. 

The Ridge controller (del Castillo, 2002) based on a minimum variance criterion was found to have good characteristics to be adapted to the transfer function defined in (1). This controller has a tuning parameter that balances the variances of the output with the inputs.

The development of an appropriate monitoring scheme through control charts leads to several questions, such as: which characteristics are to be monitored, where to apply the charts and which control charts are appropriate. To monitor the viscosity, three control charts were considered as good candidates, namely the EWMA with residuals, the CUSCORE chart and the EWMAST chart, since they revealed to be more effective in detecting changes of small magnitude than some other charts. It was considered equally important to apply multivariate control charts to monitor the input variables of the digesters. The multivariate study was performed using two control charts of the same type, but applied with different goals. The first one was applied directly to the digesters input variables, whereas the second one was applied to the difference between each input variable (real value) and the theoretical value shown by the controller. Given the large amount of variables and the auto-correlated structure exhibited by the data, the control charts were based on projection methods, namely the dynamic principal components analysis (DPCA), proposed by Ku et al. (1995). 

In both cases, i.e. controllers and control charts, the tuning parameters were obtained through simulation models developed on a MATLAB® platform.

3. Results and Discussion of Integration Outputs

After the definition of the three “hardware” elements previously described, one has to establish the “software” elements: intervention criterion, performance measures, type of disturbances and simulation conditions. 
The approach used in the research is somehow in between the second and the third approaches mentioned in the Introduction; on one hand, the integrated EPC/SPC focuses on control charts to monitor both the input and the output variables and, on the other, it uses a constrained manual controller. Therefore, the intervention criterion was established as a constrained action of the controllers by both control charts.
The Asymptotic Mean Square Deviation (AMSD) was used as the performance measure to compare different scenarios, since it incorporates the deviations from the target and the variability (particularly useful when a process is submitted to a disturbance). Besides the use of AMSD, the Average Run Length (ARL) was applied to evaluate the performance of each control chart.

Given the main characteristics of the pulp process, it was possible to list seven different types of disturbance that can affect the dynamic behaviour of the process: the input and output variables, the autoregressive parameter and the residuals of the model ((, Nt). 

As regards the simulation conditions, the running of 10 000 cycles, with 248 observations each, was considered sufficiently credible. 
Since the proposed EPC/SPC was designed to be applied in sequential stages, the construction of the different scenarios starts with an open-loop process, followed by the incorporation of the control charts and then the manual controller. The scenarios are:

1)– open loop (system operating freely), 2)– entry of univariate control chart, 3)– entry of controllers (manual regime), 4)– entry of multivariate control chart applied to controllers, and 5)– entry of multivariate charts to control the input variables. 
Figure 2 compares the five scenarios when two disturbances were applied to the process. In the figure, ( is the size of the shift in the mean, measured in terms of the standard deviation (new mean = (+(().
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Figure 2 – AMSD for the five scenarios with implementation of EWMAST chart
As can be seen in Figure 2, the scenarios present a different behaviour when the same control chart (EWMAST) was used. It is visible that the proposed methodology increased the process performance (scenarios 4 and 5), when compared with scenario 1 (no control) or with the tradicional approaches (scenarios 2 and 3). 
4. Conclusions
The success inherent to an integrated methodology of this nature is closely associated with the ability of creating different scenarios and the skill in comparing them. Other requirements equally important are the quality of the mathematical model and the selection of both the controllers and the control charts. Although this study has used real production data to create the model, the employment of computational simulation revealed to be an essential tool in accomplishing the aim of the research. The developed simulation models were used for studying the sensitivity and robustness of controllers and control charts. Additionally, the simulation exercise is the only way of testing different scenarios when the process is submitted to several types of disturbance. 
As far as the literature review revealed, the pulp and paper industry has not applied integrated methodologies based on “black boxes”. According with the findings of present research, and once the best integrated scenario is obtained and appropriate interface software is developed, the process engineers can use the methodology as a decision making tool when the production process is affected by certain disruptions, with valuable consequences on quality, productivity and competitiveness. Consequently, one expects that the company where the research took place will, in the near future, benefit from the implementation of the proposed appoach.
At last, it is also important to highlight the flexibility and adaptability of the methodology to any other type of production system when the production staff can use the available data to build a mathematical transfer function that models the dynamic behaviour of the process. 
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