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Abstract

This work addresses the problem of designing an on-line discrete-delayed measurement processor to estimate the state of a class of stirred tank bioreactors where the growth of sulfate reducing bacteria takes places. On the basis of the Monod-type model of the reactor, a geometric approach is straightforward applied to systematically construct and tune the data processor.  The resulting estimator is tested on a continuous and a batch culture process, showing a robust convergence even in the presence of modeling errors.
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1. Introduction
Sulfate reducing bacteria are anaerobic microorganisms that have become especially important in biotechnological processes (i.e. water treatment) due to its ability to degrade organic material and remove heavy metals [1].

Many processes of material degradation and heavy metal removal are carried on anaerobic bioreactors, which are large fermentation tanks provided with mechanical mixing, heating, gas collection, sludge addition and withdrawal ports, and supernatant outlets. The anaerobic digestion is affected by many factors including temperature, retention time, pH, and chemical composition of wastewater. In a practical framework, the reactor is operated on the basis of laboratory analysis of samples, usually taken out at periodic sampling times; nevertheless, the obtained information reflects the system status in the past depending on the sampling time interval. In view of the mentioned monitoring scheme, operation improvements imply more-frequent (or continuous) monitoring of the key variables; however, the lack of reliable, sterile and robust sensors obstacles this task [2].
This work focuses on the problem of predicting present-time key variables of a class of stirred tank bioreactors using discrete-delayed (DD) measurements; the class refers to the process of a sulfate-reducing bacterium growth. Related to model-based approaches, it is taken into account that, although the bioreactors can be considered as tank reactors for analysis purposes, their complex phenomena turns the conceptual and mathematical framework for model development large in place; moreover, the existing models are highly nonlinear. Then, a experimentally validated Monod-type kinetics model is considered in order to straightforward apply a state-feedback linearization approach that allows a systematic design of the estimator.
2. The Bioreactor and its Estimation Problem
It was considered a stirred tank reactor where the Desulfovibrio Alaskensis (DA) bacteria growth is carried out. The DA bacterium is a sulfate reducing bacteria used, in this case, to degrade some undesirable sulfate compounds to sulfides. It was previously determined that the Monod’s kinetic equation adequately describes our reactor [2], where its kinetics parameters were determined via standard methodology in a batch culture [3]. 
From mass balances and the kinetics Monod model, the reactor model is given by,

EQ \o(X,.) = – D X + ((S) X := fX(.),               X(t0) = X0, 



(1a)
EQ \o(S,.) = D (SIN – S) – ((S) EQ \f(X,YS/X) := fS(.),     S(t0) = S0,     yS(tk) = S(tk–1),     tD = tk+1 – tk.
(1b)
EQ \o(P,.) = – D P + ((S) EQ \f(X,YP/X) := fP(.),           P(t0) = P0,



(1c)
((S) = (MAX EQ \f(S,ks + S)






(1d)
There are considered three states: substrate (sulfate compound) concentration (S), biomass (or DA) concentration (X), and sulfide concentration (P). The known exogenous inputs are: the dilution rate (D), and the substrate concentration (SIN) in the input flow (D). YS/X and YP/X are the sulfate and sulfide coefficient yields, respectively. ((.) is the specific growth rate, and (MAX and ks are the maximum specific growth rate and the affinity constant, respectively. With suitable choices of D, the preceding model describes batch (D = 0), semibatch (D S = 0) and continuous (D ( 0) operations.
In order to monitor the reactor, samples from the culture are taken anaerobically each hour. Sulphate concentration in the medium is measured by a fast and simple turbidimetric method based on the precipitation of barium [4]. Then, this is the only one measurement considered. The substrate concentration (yS) at the instant tk reflects the reactor state at the past instant tk–1; tD is the sampling-delay time period.
Resorting to an estimation approach, the monitoring problem is translated to the one of designing an estimator that, on the basis of the bioreactor model, and driven by a sequence of DD-measurements {yS(t0), yS(t1), …, yS(tk)} each sampling time instant (tk) on-line yields estimates of the actual biomass (X(tk)), substrate (S(tk)) and sulfide (P(tk)) concentrations. Besides, X and P measurement could be eliminated, meaning a cost reduction due to additional on-line laboratory analysis.
3. Estimator Design

By convenience, the reactor model is rewritten in compact vector notation:

EQ \o(x,.)S = fXS(xS, u, p),     xS(t0) = xEQ \o\al(S,0);     yS(tk) = ( xS(tk–1),     tD = tk – tk–1,

(2a)
EQ \o(P,.) = fP(x, u, p),     P(t0) = P0,





(2b)
xS = [X, S,]’,     x = [X, S, P]’,   u = [D, SIN]’,   p = [YS/X, YP/X, (MAX, ks]’,

(2c)

f = [fM, fS]’,     f = [fM, fS, fP]’,   ( = [0, 1],




(2d)
This form makes the cascade connection between the xS-states and the P-state marked. Also it is important to note that its time-varying solution describes a unique reactor motion x(t) determined by the initial conditions (x0), the inputs (u), and the parameters (p), because of the continuous differentiability of f(.)((S and (P are the transition maps of the differential equations 2a and 2b, respectively):

xS(t) = (S(t, t0, xEQ \o\al(S,0), u, p),          P(t) = (P(t, t0, x0, u, p)



(3a)

or equivalently:          x(t) = ((t, t0, x0, u, p),          ( = [(S, (P]’


(3b)

On the basis of the reactor model (Eq. 1 or 2), the estimator is designed by a geometric non-linear approach [5]. The approach follows a detectability property evaluation of the reactor motion to underlie the construction, tuning and convergence conditions of the estimator.
3.1. Detectability Property

For a moment, it is assumed that the S-measurement is continuous-instantaneous, in the understanding that this unrealistic assumption will be later removed. In a physical sense, the detectabilty property amounts to the solvability of the following differerential estimation problem: reconstruct the reactor motion x(t) provided the data:
DS = {x0, yE(t), p},
yE = [yS, EQ \o(y,.)S]’,




(4)

To solve this problem, the S-measurement equation (Eq. 2) is recalled in its continuous-instantaneous version (yS(t) = S(t)); later, a one time derivative is taken by replacing the resulting time-derivative of S (in the right-hand side) by the map fS(.); finally, the P-dynamics is recalled to obtain the following differential-algebraic system
((xS, u, p) = yE,          EQ \o(P,.) = fP(x, u, p),     P(t0) = P0;          ((xS, p) := [S, fS(.)]’
(5)
It must be noticed the cascade interconnection between the algebraic and the differential items. At each time t, the two algebraic equations system admits a unique and robust solution for xS in any motion in which S ( 0 (the Jacobian matrix of ( is nonsingular for S ( 0). Feeding the solution into the differential equation, the following differential estimator, driven by the output yE, and the input signals u, is obtained:
xS = ((yE, p),          EQ \o(P,.) = fP(yE, u, p),     P(t0) = P0,



(6)
On the framework of the detectability motion given in [5], the Jacobian matrix of ( is the observability matrix, and its non-singularity provides the robust partial observability of the reactor motion x(t), with observability index ( = 1; and the differential equation in Eq. 6 is the unobservable dynamics whose unique solution is the unobservable motion (Eq. 3a).
3.2. Estimator Construction
Once the possibility of estimator construction was established, as mentioned above, the estimator construction followed a straightforward application of the construction procedure given in [5], but with one tenuous modification: the estimation sequence was delayed in one-step by replacing the discrete-instantaneous output estimation error {yS(tk) – EQ \o(S,^)(tk)} by the DD one {yS(tk) – EQ \o(S,^)(tk–1)} and considering the interval [tk–1, tk], instead of [tk, tk+1] as the work one. Then, the estimator is given by:

EQ \o(x,^)S(tk) = (S(tk, tk–1, EQ \o(x,^)S(tk–1), u, EQ \o(p,^)) + G(EQ \o(x,^)S(tk–1), u, EQ \o(p,^), tD, KP) (yS(tk) – ( EQ \o(x,^)S(tk–1)) 

                                                 + H(EQ \o(x,^)S(tk–1), u, EQ \o(p,^), tD) xI(tk–1),     EQ \o(x,^)S(t0) ( xS(t0),
(7a)
xI(tk) = xI(tk–1) + KI (yS(tk) – ( EQ \o(x,^)S(tk–1)),     xI(t0) = 0,



(7b)

EQ \o(P,^)(tk) = (P(tk, tk–1, EQ \o(x,^)(tk–1), u, EQ \o(p,^)),     EQ \o(P,^)(t0) ( P(t0),



(7c)

where

GP(.) = ((Xs((.))–1 (((tD))–1 KP,          H(.) = ((Xs((.))–1 (((tD))–1 T(tD),     tk = tk–1 + tD,
(xs((.) = EQ \b\bc\[(\a\co2(0,1,(XfS(.),(SfS(.))),      ((tD) = EQ \b\bc\[(\a\co2(1, tD,0, 1)),      T(tD) = EQ \b\bc\[(\a\co1(1/2 tD2,tD)),      KP = P,1)EQ \b\bc\[(\a\co1(k, kEQ \o\al(P,2)))
,     KI = kI.
and EQ \o(z,^) denotes the estimate of the variable z. (S and (P are the transition maps defined in Eq. (3). G(.) is a nonlinear gain constructed on the basis of the observability matrix (xs(, which depends on the state xS, the sampling-delay time tD and the proportional gain KP. The estimator includes a sumatorial correction term (third term of Eq. 7a) to eliminate modeling error problems; xI is an extended state that accounts for the sumatorial output estimate error, and KI is the corresponding sumatorial gain. ((tD) is the transition matrix of model reactor in its state-feedback linearized (via the ( map) form; and the matrix T(tD) results from the transformation to original x-coordinates of the observer from its state-feedback linearized form.

The estimator can be regarded as formed by two parts: the first (Eqs. 7a, b) is a closed-loop observer that yield the estimate sequence {EQ \o(x,^)S(tk)} (k = 0, 1,  2, …) convergent to the current sequence {xS(tk)}; and the second (Eq. 7c) is on open-loop observer driven by the xS-estimates that yields the estimate sequence {EQ \o(P,^)(tk)} convergent to the current sequence {P(tk)}.
3.3. Estimator Tuning

In order to choice the entries of the gain matrices KP and KI, the output estimation error dynamics in its state-feedback linearized form is recalled; this takes the following form:
((tk+3) + (kEQ \o\al(P,1) – 3) ((tk+2) + (1/2 tD2 kI + tD kEQ \o\al(P,2) – 2 kEQ \o\al(P,1) + 3) ((tk+1) 


+ (1/2 tD2 kI – tD kEQ \o\al(P,2) + kEQ \o\al(P,1) – 1) ((tk) = qy,     ( = yS – (xS

(8)
The linear characteristics can be noticed on the left side of the equation; however in qy the inherent nonlinearities of the estimation error dynamics are enclosed. This means that, by suitable choices of the gains, the left side is stable, but qy is a potentially destabilizing factor of the dynamics. Except for qy,  Eq. (8) establishes a clear relationship between the choice of the tuning parameters and the sampling-delay time value in front of the desired kind of estimation error response.
Pole assignment into the unit circle was followed to make the linear-part of Eq. (8) stable. It was chosen a pole-pattern from a continuous framework (in the complex s-plane) as a reference departure point:
(1 = –(,

(2,3 = –( (( ( (1 – ()1/2)

where ( and ( corresponds to the characteristic frequency and the damping factor of a stable 3rd order linear dynamics of reference . These eigenvalues were map into the unit circle of the complex z-plane (the discrete framework) according to:
(i = exp((i tD),     i = 1, 2, 3.
Then, the characteristic polynomial of the pole set {(1, (2, (3} was obtained in terms of the tuning parameters ((, () and the sampling-delay time (tD):

(( – (1) (( – (2) (( – (3) = 0     (     (3 + c1(tD, (, () (2 + c2(tD, (, () ( + c3(tD, (, () = 0

Comparing the coefficients set of this characteristic polynomial of reference with those of the output estimation error dynamics (Eq. 8), the gains were obtained in well-defined terms of the sampling-delay time and the tuning parameters (tD, (, ():
kEQ \o\al(P,1) = (1(tD, (, (),     kEQ \o\al(P,2) = (2(tD, (, (),     kI = (3(tD, (, (),
( = s (R.
It was introduced the parameter s, which is regarded as an accelerating factor of the dynamics with a certain time response of reference ((R). Then, once the tD is defined, usually by practical considerations and (R and ( are fixed, s remains as the unique tuning parameter.
In order to attain estimation convergence, the stable linear part of the error dynamics must dominate the non-linear one. In [5] it is implied that a value range of s (s ( (s*, s*) exists, whose wide directly depends on the magnitude of the modeling error (enclosed in qy) and on the sampling delay time (tD). 
4. Simulation Results
To show the performance of the estimator, a simulation study was realized. The model parameters for the DA bacteria are (YS/X, YP/X, (MAX, ks) = (0.25, 0.25/0.95, 0.035 h-1, 0.9 g L-1), which are the corresponding for the bioreactor considered as the actual plant. These parameters were obtained from a previous regression fitting over a set of experimental runs. For the estimator, a parametric error was introduced: EQ \o(k,^)s = 0.8 instead of 0.9. Attending practical considerations, the sampling-delay time was set at tD = 1 h.
4.1. Continuous Operation

For this operation the dilution rate was set at D = 0.025 h-1, and the substrate concentration in the flow input, at SIN = 5 g L-1. The initial conditions were: (i) Bioreactor: (X0, S0, P0) = (0.5, 5, 0), (ii) Estimator: (EQ \o(X,^)0, EQ \o(S,^)0, EQ \o(P,^)0) = (0.3, 6, 0). The tuning parameter were: ((R, (, s) = (1/200, 10, 1). The behavior of the estimator is shown in Fig. 1a. The estimator adequately predicts the key variables at a time equivalent to ¼ of the bioreactor settling time (( 200 h); although, for the M and P variables, the present-time prediction is faster.
4.2. Batch Operation

The initial conditions were: (i) Bioreactor: (X0, S0, P0) = (5, 12, 0), (ii) Estimator: (EQ \o(X,^)0, EQ \o(S,^)0, EQ \o(P,^)0) = (5.1, 11, 0). The tuning parameters were: ((R, (, s) = (1/200, 10, 1). The behavior of the estimator is shown at Fig. 1b. Similar to the continuous operation, the estimator adequately predicts the key variables at a time equivalent to ¼ of the bioreactor settling time (( 20 h); but, the estimator must be off at a S-value close to zero, as suggested by the observability property.
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Fig. 1a. Performance of the estimator in a continuous operation.

Fig. 1b. Performance of the estimator in a batch operation

5. Conclusions

In this work the design of a nonlinear estimator for a class of stirred tank bioreactor driven by discrete-delayed measurements has been presented. Based on a Monod-type kinetics model, the design included a systematic construction and tuning, and a convergence criterion. The design followed a geometric approach, and the tuning was done with a conventional pole-assignment technique. The performance of the estimator was shown in a simulated framework, that motivates the application of the estimator in a practical (laboratory or industrial level) framework.
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