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Abstract

Self-optimizing control is a useful concept for selection of controlled variables (CVs) to achieve near-optimal operation using feedback control. Traditionally, CVs have been selected as individual measurements, but methods for selecting linear combinations of measurements as CVs have also been recently proposed. In this paper, we compare the efficiencies of these available methods using the case study of an evaporator. We show that near-optimal operation can be realized by controlling appropriately selected measurement combinations. We also highlight some outstanding issues related to CV selection in the self-optimizing control framework.
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1. Introduction
For tracking the changes in optimal operating point due to variations in disturbances d, it is optimal to use an online optimizer. A simpler strategy for achieving near-optimal operation is to use feedback, where the inputs u are changed to keep selected controlled variables (CVs) c at constant setpoints. Self-optimizing control is said to occur, when the loss incurred by the feedback based strategy is acceptable (Skogestad, 2000). 
The loss can be minimized and thus near-optimal operation can be achieved through appropriate selection of CVs. The selection of CVs using general nonlinear formulation of self-optimizing control can be time consuming and local methods are used for quick screening of alternatives (Halvorsen et al., 2003). Traditionally, CVs have been selected as a subset of available measurements y. Recently, locally sub-optimal (Alstad, 2005; Alstad and Skogestad, 2007) and optimal methods (Kariwala, 2007a; Kariwala et al., 2007b) for selecting linear combinations of measurements as CVs have also been proposed. In this paper, we compare the efficiencies of these methods using the case study of an evaporator (Newell and Lee, 1989). We show that the control of measurement combinations provide much smaller losses as compared to the control of best individual measurements and thus near-optimal operation is realized. We also highlight some outstanding issues, e.g. handling constraints and modeling errors, related to the selection of CVs using the concept of self-optimizing control.

2. Local Methods for Self-Optimizing Control
We characterize the steady-state economics of the plant by the scalar objective functional J(u,d). When the feedback-based policy is used, J is also affected by the measurement error n in implementing constant setpoint policy, which results due to measurement noise and other uncertainties. To account for n, the linearized model of the process, obtained around the nominally optimal operating point, is represented as
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where the diagonal matrices Wd and Wn contain the magnitudes of expected disturbances and implementation errors associated with the individual measurements, respectively. In (1), y, u, d and n are ny, nu, nd and ny dimensional vectors, respectively, where ny ≥ nu. The CVs, c are given as

[image: image2.wmf]n

HW

d

W

G

Gu

Hy

c

n

d

d

+

+

=

=

         
(2)
where G = HGy and 
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. When d and n are constrained to satisfy ||[dT nT]T||2 ≤ 1,
the worst-case and average losses are (Halvorsen et al., 2003; Kariwala et al., 2007)
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where σmax(.) is the maximum singular value, ||.||F is the Frobenius norm, 
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. Here, Juu = ∂2J/∂u2 and Jud = ∂2J/(∂u∂d), evaluated at nominally optimal operating point.
The CVs are selected by minimizing the losses in (3) with respect to H. When individual measurements are selected as CVs, the best nu measurements are selected by restricting the elements of H to be 0 or 1 and enforcing HHT = I. When combinations of measurements are used as CVs, the integer restriction on the elements of H is relaxed but the additional condition rank(H) = nu is imposed. Halvorsen et. al (2003) used non-linear optimization for finding H, which can be very time consuming and more importantly can converge to local optima. Alstad and Skogestad (2007) proposed the use of null space method, where the implementation error is ignored and H is selected such that. 
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The assumption of ignoring the implementation error is limiting and can only provide a sub-optimal solution. More importantly, (4) holds only when ny ≥ nu + nd. Alstad (2005) has presented extended null space method for finding H using dominant disturbance variables or directions, when sufficient number of measurements are not available. Clearly, this may not be possible in general, without sacrificing optimality further. 
Recently, Kariwala et. al (2007a, 2007b) presented explicit solutions for finding H that minimize the local worst-case and average losses. To present these results, let 
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 and λmax(.) denote the largest eigenvalue. The worst-case and average-case optimal H are selected as the transpose of the eigenvectors corresponding to the largest nu eigenvalues of 
[image: image9.wmf](

)

(

)

T

T

y

uu

y

YY

G

J

G

-

-

1

2

g

 and 
[image: image10.wmf](

)

(

)

T

T

y

uu

uu

y

YY

G

XJ

J

G

-

-

-

5

.

0

5

.

0

, respectively, where (Kariwala et al, 2007b)
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Kariwala et. al (2007b) have shown that average-case H matrices are super-optimal in the sense that they also minimize worst-case loss simultaneously, though the converse is not true. Thus, the selection of H matrix by minimizing average loss is advantageous.
3. Case Study: Evaporator
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Figure 1. Schematic of Evaporator
Problem description. We consider the (slightly modified) forced-circulation evaporation process (Newell and Lee, 1989), where the concentration of dilute liquor is increased by evaporating solvent from the feed stream through a vertical heat exchanger with circulated liquor. The economic objective is to maximize the operational profit [$/h], formulated as a minimization problem of the negative profit (6). The first three terms of (6) are operational costs relating to steam, water and pumping. The fourth term is the raw material cost whilst the last term is the product value.
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(6)
The process has the following operational constraints:
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The process model has eight degrees of freedom, among which three (X1, T1 and T200) are disturbances and the rest five (F1, F2, P100, F3 and F200) are manipulable variables. The case with X1 = 5%, T1 = 40oC and T200 = 25oC is taken as the nominal operating point. The allowable disturbance set corresponds to ± 5% variation in X1 and ±20% variation in T1 and T200 of their nominal values. The optimization problem in (6)-(7) is solved for the nominal disturbances. The minimum negative profit obtained is -582.233 [$/h] and the corresponding values of process variables are shown in Table 1.

Degrees of freedom analysis. The constraints X2 = 35.5 % and P100 = 400 kPa remain active within the whole disturbance region. In addition, the separator level L2 has no steady-state effect on the plant operation, but must be stabilized at its nominal setpoint. 
Table 1. Variables and Optimal Values
	Var.
	Description
	Value
	Var.
	Description
	Value

	F1
	Feed flowrate
	9.47 kg/min
	L2
	Separator level
	1.00 meter

	F2
	Product flowrate
	1.33 kg/min
	P2
	Operating pressure
	51.41 kPa

	F3
	Circulating flowrate
	24.72 kg/min
	F100
	Steam flowrate
	9.43 kg/min

	F4
	Vapor flowrate
	8.14 kg/min
	T100
	Steam temperature
	151.52 oC

	F5
	Condensate flowrate
	8.14 kg/min
	P100
	Steam pressure
	400.00 kPa

	X1
	Feed composition
	5.00 %
	Q100
	Heat duty
	345.29 kW

	X2
	Product composition
	35.50 %
	F200
	C.W. flowrate
	217.74 kg/min

	T1
	Feed temperature
	40.00 oC
	T200
	Inlet C.W. temp.
	25.00 oC

	T2
	Product temperature
	88.40 oC
	T201
	Outlet C.W. temp.
	45.55 oC

	T3
	Vapor temperature
	81.07 oC
	Q200
	Condenser duty
	313.21 kW


After control of active constraints and L2, two degrees of freedom remain for self-optimizing control. Without loss of generality, we select u = [F200 F1]T. For these two degrees of freedom, we consider that 2 CVs are to be chosen as a subset or combination of the following available measurements:
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Local analysis. The Hessian and gain matrices for this process are available in (Kariwala et al., 2007b). The implementation errors for the pressure and flow measurements are taken to be ±2.5% and ±2%, respectively, of the nominal operating value. For temperature measurements, implementation error is considered as ±1oC. 
The best individual measurements were found to be c2 = [F3 F200]T for which the local worst-case and average losses are 56.71 [$/h] and 3.81 [$/h], respectively. In comparison, when the optimal combinations of all available measurements are used, the local worst-case and average losses substantially decrease to 7.47 [$/h] and 0.19 [$/h], respectively. In practice, use of combinations of all available measurements is often not necessary. The lowest worst-case losses for the best combinations of 2 to 9 measurements were found to be 56.71, 11.64, 9.19, 8.01, 7.59, 7.52, 7.50 and 7.48 [$/h] respectively. It is clear that combining 3 or 4 measurements gives a good trade-off between complexity and incurred loss. 
Some promising self-optimizing variables and the corresponding losses obtained using various methods to design H are shown in Table 2, where the super-optimality of average-case optimal H should be noted. Although inferior for worst-case loss minimization, the local average loss obtained using the extended null space method (Alstad, 2005) is smaller than the use of worst-case optimal H. In general, however, the loss obtained using null space method can be higher than ontained using individual measurements due to the neglected implementation error (Hori and Skogestad, 2007). 
Verification using nonlinear model. The seven designs (c2, c3w, c3a, c3null, c4w, c4a, c4null) are verified using nonlinear model. Here, a difficulty is that although linear analysis assumes that the set of active constraints does not change with disturbances, the constraints on P2 become active for many disturbance and implementation error scenarios. Cao (2005) suggested the use of a cascade control strategy, where the variable liable to violate a constraint is controlled in the inner loop and the self-optimizing variable is controlled in the outer loop. Using this method, the losses for different candidate CVs are evaluated by using a set of 100 randomly generated d and n.

Table 2. Losses [$/h] for candidate self-optimizing variables
	CV
	Measurements
	Local Loss
	Loss using nonlinear model

	
	
	Lworst
	Laverage
	Mean
	Maximum
	Std. dev.

	c2
	F3, F200
	56.71
	3.81
	17.18
	55.16
	15.79

	c3w
	F2, F100, F200
	11.64
	1.23
	6.79
	25.88
	5.45

	c3a
	F2, F100, F200
	11.64
	0.65
	4.04
	25.79
	4.79

	c3null
	F2, F100, F200
	14.20
	1.19
	4.38
	24.25
	5.08

	c4w
	F2, F100, T201, F3
	9.20
	0.79
	6.83
	22.34
	5.43

	c4a
	F2, T201, F3, F200
	9.43
	0.45
	4.98
	51.57
	6.50

	c4null
	F2, T201, F3, F200
	11.31
	0.76
	5.77
	50.99
	7.45

	ĉ4w
	F2, F100, F5, F3
	9.88
	0.85
	5.32
	19.55
	4.39

	ĉ4a
	F2, F100, F5, F3
	9.88
	0.47
	2.81
	19.35
	3.42

	ĉ4null
	F2, F100, F5, F200
	13.65
	0.92
	4.24
	23.51
	4.96


Table 2 shows that the control of measurement combinations can reduce the loss significantly, as compared to control of the individual measurements. The ranking of different candidates follows local analysis closely, however, the losses obtained by controlling 4-measurement combinations (c4w, c4a and c4null) are worse than the corresponding losses seen with the use of the 3-measurement combinations.

Effect of modeling error due to linearization. We note that all of c4w, c4a and c4null use F3. As found using Monte-Carlo simulations, among all candidate measurements the linear model for F3 shows the largest modeling error due to linearization. Local analysis (see Table 2) shows that a promising 4-measurement set that does not contain F3 is {F2, F100, F5, F200}. The worst-case and average-case optimal combinations (ĉ4w and ĉ4a) of these measurements provide smaller losses than the corresponding losses obtained using c3w and c3a, as expected from local analysis. Similar results are also observed upon application of extended null space method. Explicit consideration of modeling error arising due to linearization during CV selection is an issue for future research. 
Finally, we recommend the use of ĉ4a, which provides lowest losses among different alternatives. If further reduction in the complexity of control structure is desired, c3a can also be used.

4. Conclusions and Future Directions
We have demonstrated that controlling appropriately selected measurement combinations can provide nearly optimal operation. Among the available methods for selecting measurement combinations as CVs, the approach proposed by Kariwala et al. (2007b) is superior as compared to other methods, in terms of both loss minimization and computational efficiency. In the following discussion, we briefly point out some outstanding issues related to CV selection in the self-optimizing control framework.
1. Modeling error: Due to the neglected modeling error arising due to linearization, the loss obtained using available locally optimal methods may not be acceptable for the actual nonlinear plant in some cases. Possible approaches for overcoming this drawback include use of second-order accurate models for local analysis (Guay et al., 2005) and inclusion of the modeling error in the matrix Wn. 
2. Constraint handling: Local analysis assumes that the set of active constraints does not change with disturbances. Upon violation of this assumption for the nonlinear plant, acceptable loss can be achieved using cascade (Cao, 2005) or model predictive controllers (Narasimhan and Skogestad, 2007), although at the expense of a more sophisticated control structure.  To maintain the simplicity of the control structure, we are currently pursuing the selection of measurement combinations by enforcing operational constraints in local analysis. 
3. Computational complexity: Although local analysis simplifies presecreeing of alternatives, finding locally optimal measurement subset or combination requires evaluation of all possible alternatives. Branch and bound algorithms can efficiently solve combinatorial optimization problems and their application for CV selection is currently being researched; see (Cao and Kariwala, 2007) for preliminary results.

4. Nonlinear combinations: The use of nonlinear combinations of measurements as CVs can provide smaller losses as compared to linear combinations. Cao (2005)  suggested using the gradient of the Lagrangian function of the nonlinear optimization problem as CVs. A similar approach was taken by Srinivasan et al. (2003) for control of batch processes. A difficulty with using gradient function is its possible dependence on unmeasured disturbances. Furthermore, similar to null space method (Alstad, 2005), this approach does not take the implementation error into account.
5. Dynamic processes: The available methods for self-optimizing control focus on steady-state economics. When the disturbance dynamics are fast or batch processes are used, however, consideration of dynamics becomes important. It would be useful to extend the available local methods for CV selection for dynamic processes. To this end, Dahl-Olsen et al. (2007) have recently presented some preliminary results and further work is warranted.
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