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Abstract

In the development of model predictive controllers a significant amount of time and effort is necessary for the development of the empirical control models. Even if on-line measurements are available, the control models have to be estimated carefully. The payback time of a model predictive controller could be significantly reduced, if a common identification tool would be available which could be introduced in a control scheme right away. In this work it was developed a control system which consists of a neural network (NN) with external recurrence only, whose parameters are adjusted by the extended Kalman filter in real-time. The output of the neural network is used in a control loop to study its accuracy in a control loop. At the moment this control loop is a NN-model based minimum variance controller. The on-line system identification with controller was tested on a simulation of a fed-batch penicillin production process to understand its behaviour in a complex environment. On every signal process and measurements noise was applied. Even though the NN was never trained before, the controller did not diverge. Although it seemed like the on-line prediction of the NN was quite accurate, the real process was not learned yet. This was checked by simulating the process with the NN obtained at the end of the batch. Nevertheless the process was maintained under control near the wanted set-points. These results show a promising start for a model predictive controller using an on-line system identification method, which could greatly reduce implementation times.
Keywords: KALMAN FILTER, NEURAL NETWORKS, ON-LINE, TRAINING, MINIMUM VARIANCE CONTROL.

1. Introduction
Most companies have limited resources as most of the large central research departments have shrunken down. Advanced control projects have to compete with other cost saving projects and therefore need to have a typical payback time of 2 years. Once a control system is introduced, it has to be maintained as the process configuration or process conditions can change willingly or unwanted, for example catalyst decoking. If it would be possible to have a general control tool with self-tuning capabilities for system identification and control, implementation time and thus payback times could be greatly reduced. 
The proposed control and system identification system consist of a neural network with external recurrence, whose weights are adjusted by the extended Kalman filter. The neural network’s prediction is fed to a second extended Kalman filter which tries to obtain the set-point at the next sampling point. This system identification scheme and control structure can be seen as an adaptive non-linear minimum variance control (Astrom and Wittenmark, 1984).
1.1. System identification
Neural networks are known to be non-linear fitters in a certain domain. A neural network with external recurrence is normally sufficient for chemical processes as they show slow dynamics compared with electrical (Haykin, 1999).
Various neural network configurations can be seen as the non-linear correspondent of known linear models such as the models NARX, ARMAX, CARMA and state space models (Haykin, 1999; Rivals and Personnaz, 1998).
The neural network weights are adapted by the extended Kalman filter, which is implemented as the MEKA algorithm as first introduced by Shah and Palmiero (1990) and later and Puskoris and Feldkamp (1991) as the decoupled Kalman filter algorithm. In this case every neuron has its own extended Kalman filter.
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Figure 1: Exemplification of the application of the Kalman filter as a local sub-problem (Kalman filter per neuron, MEKA or total decoupled Kalman filter algorithm) and as a global extended Kalman filter (GEKF)
The network weights are updated in real-time by a Multiple Extended Kalman filter algorithm to account for changes in the process, whose implementation can be found in Scheffer et al. (2000, 2001). 
New development have taken place in improving de Kalman filter by replacing the derivatives for mean and variance calculations (Julier and Uhlmanm, 1997) and applying this concept to neural networks (Wan and van der Merwe, 2000).
1.2. The control system

The estimate of the recurrent neural network is fed to an extended Kalman filter to estimate the controller parameters or directly the manipulated variables. Here, the latter approach is chosen and the manipulated variable is directly estimated by the following dynamical system:

m(k+1)=m(k)+w(k)
(1)
yc(k)=yann,c(k)+v(k)
(2)
where m is the manipulated variable, yc the controlled variable, w and v are variables with a Gaussian distribution of (0,Q) and (0,R) respectively.

The measurement, d,  of the controlled variable is the desired set-point of the controlled variable. The manipulated variable is one of the inputs of the recurrent neural network. In the application of the Kalman filter, the observation equation has to be linearised every sampling instance. Thus the derivative of the controlled variable to the manipulated variable has to be calculated, which is the derivative to the recurrent neural network. The derivative of a neural network can be calculated by applying the chain rule, which results for a two layer neural network in:
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(3)
 The controlled variable can now be updated by the Kalman filter:
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1.3. The penicillin production process

Fed-batch processing is a typical example of a process exhibiting non-linear process dynamics. Especially, biochemical processes are known to have a lot of interaction between their state variables and are sensible to minor changes in pH, dissolved oxygen concentration, and temperature due to the sensitivity of the biochemical catalysts. PID control behaves well in case of continuous processing but in batch processing the control parameters will never maintain optimal values due to the changing process conditions. Therefore this seems to be a challenging study case as it exhibits non-linear process dynamics and a need for a self-tuning controller.
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Figure 2: The proposed non-linear Self-tuning controller scheme

The emphasis is put on the production phase and not on the growing phase where an optimal feeding strategy is essential in obtaining a high concentration of penicillin. But it is essential to keep the dissolved oxygen concentration above 30% to ensure life conditions to the fungi.  In this work the feeding strategy determined by Rodrigues (1999) is used and the control objective is to maintain the dissolved oxygen concentration at about 55%. The dissolved oxygen concentration is controlled by manipulating the rotation speed through the mentioned non-linear self-tuning controller. 

An essential part of the non-linear self-tuning controller is the recurrent neural network identification. Three input and four state variables were taken to identify the process and are the substrate feed flow, the rotation speed and the air flow as input variables and the bio-mass concentration, the substrate concentration, the penicillin concentration and the dissolved oxygen concentration as state variables. The mentioned Kalman filter algorithm will be compared to the standard backpropagation algorithm.

2. Results

The system identification is an important part of the control structure. It is necessary to have a good prediction of the dissolved oxygen concentration of the next measurement as this is used by the minimum variance control. Therefore the on-line prediction was studied also without the control structure to understand its prediction capabilities. The standard back-propagation algorithm (SBP) is one of the few algorithms was used as a comparison as it is one of the few other recurrent algorithms. The parameters of the standard back propagation and the kalman filter algorithms were tuned and a selection was made by ranking them on the training error or on the simulation error of all the state variables as mentioned in the former paragraph. The simulation error was obtained by simulating again after the on-line training, which is the showing of every data-point only one time to the neural network. We would like to note that it was also tried to use the standard backpropgation algorithm with momentum, but that did not result in smaller errors than with the standard backpropagation algorithm. 
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Figure 3: Dissolved oxygen prediction of the neural network during the on-line training (best training error and normalized data)
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Figure 4: Simulation of the same dissolved oxygen data with the on-line trained neural network (best training error)
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Figure 5: Dissolved oxygen prediction of the neural network during the on-line training (best simulation error and normalized data)
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Figure 6: Simulation of the same dissolved oxygen data with the on-line trained neural network (best simulation error)


From the figures 3 and 4 it can be seen the known fact, that the best training errors is no assurance for a good generalization error and is clearly seen the larger discrepancy between the data and the prediction in the simulation with the one-time trained neural network. But it is interesting to see that the usage of the Kalman filter algorithm results indeed in a better general learning. Additionally it can be seen that the simplification of the global extended Kalman filter to multiple local Kalman filters in the MEKA algorithm penalizes the general learning. Additionally, the MEKA algorithm shows more instability in the simulation (figure 4). 

If we turn to the tuning of the parameters, which lead to the best simulation error (Figure 5 and 6) the situation becomes even more pronounced. During the training the prediction of the dissolved oxygen concentration with the backpropagation algorithm would not be suitable for control as the concentration prediction during the prediction is not good enough. It is interesting to see that the instability in the MEKA algorithm has been transferred from the simulations error (figure 4) to the training error for this case (figure 5). Still the MEKA algorithm’s prediction during the training follows the real concentration. The GEKF algorithm outperforms in this case very much both algorithms. Therefore there is encouragement to implement the unscented Kalman filter (Julier et al., 1997) also, as this is an improvement over the extended Kalman filter. In table 1 it is shown the errors for both cases. From the table it seems that the MEKA algorithm performs better than the GEKF, but that is not true due to the instabilities as shown in figure 4 and 5.
Table 1: Training errors for the best training and best simulation cases of the different algorithms. Error summed over all the state variables (bio-mass concentration, the substrate concentration, the penicillin concentration and the dissolved oxygen concentration
	
	best train
SBP, 0.0125
	best simu
SBP, 0.001
	Best simu, MEKA, Q=(error*d_erro/dwij)2
	best train, MEKA, Q=0.2
	Best simu, GEKF, Q=1e-8
	best train, GEKF, Q=1e-8

	Rel. Error
	5.09E+06
	2.34E+06
	1.95E+05
	2.24E+05
	1.35E+06
	7.39E+05


In table 2 it is shown the calculation times of the different algorithms. Although it seems that the GEKF has a much higher computational costs, it still means that the calculation per data point is done in less than 1 second. The data is probably not faster available from the on-line measurements and therefore the GEKF would be a good candidate also for on-line control scheme or even be the favorite on-line neural network training algorithm.
Table 2: Calculation times of the different algorithms for 1200 data points
	
	SBP
	MEKA
	GEKF

	Calculation time (s)
	0.07812
	27.19
	408.9


In figure 7 and 8 is shown the minimum variance control of the dissolved oxygen concentration with the on-line training of the recurrent neural network at the same time. For the moment the MEKA algorithm has been used and therefore it can still be gained from using the GEKF algorithm. It can be clearly seen that the minimum variance control is better with the MEKA algorithm. The kalman filter training algorithm assure that the neural network training is better which results in the much smaller deviations at the end of the batch run.
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Figure 7: Estimation and minimum variance control of the dissolved oxygen concentration concentration, the recurrent neural network is trained with the MEKA filter algorithm
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Figure 8: Estimation and minimum variance control of the dissolved oxygen concentration concentration, the recurrent neural network is trained with the backpropagation algorithm


3. Conclusions

The on-line training of recurrent neural networks should be done preferably with extended Kalman filter algorithms. Localizing the Kalman filter to the neuron level (MEKA) affects the learning of the neural network and therefore the implementation of the unscented Kalman filter algorithm could lead even to further improvements for on-line training of neural networks. However, the simulations show that not always a good generalization is obtained. The application of the minimum variance controller with the on-line training of the neural network showed that control could be obtained on the neural networks prediction without divergence of the algorithm. Therefore, implementation or payback time could be reduced by applying on-line training.
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