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Abstract

This study developed a fault diagnosis method based on signed digraph (SDG), support vector machine (SVM) and improved principal component analysis (PCA) models. At first, this study decomposes a process based on the SDG of the process. Each decomposed subprocess includes a target variable as well as measured variables and faults connected to the target variables. For each decomposed subprocess, a local prediction model is trained with SVM. Fault detection is performed with residuals, i.e. the difference between the predicted value and the measured value. A substantial residual indicates the occurrence of one or more faults. If a fault occurs, we can collect the information of the residual, and then this information for each fault can be used as a kind of classifiers to identify the fault. If assumed faults are more in contrast with local models, many fault candidates would be selected as a true fault. The fault intensity model and the fault boundary model are constructed to isolate true fault and estimate fault intensity. Two principal components (PCs) which is obtained by PCA represent on the plane coordinate, and we can get a cluster called as fault centroids. The boundaries of the cluster made by fault centroids according to the fault intensity are learned by SVM, thus the fault intensity model and the fault boundary models are constructed. To verify the proposed model, we used the TE process. The results show an improved accuracy and resolution.
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1. Introduction
In this paper, we propose a fault diagnosis model. At first, a hybrid local fault diagnostic model based on the SDG which is a kind of model based approaches and a statistical learning model, SVM, would be proposed. And then, the fault intensity model and the fault boundary model were constructed for various fault intensities. One of limitations of the existing data-driven monitoring methods is that resulting from the same fault but with differing intensities may lead to spurious fault isolation. Most of conventional data-driven monitoring methods use the process data to obtain both normal operating fields and specific faults fields for diagnosing faults based on supervised classification. However, the specific faults fields would vary with fault intensity. Also, it is very important to decide whether a detected fault is a novel fault or not. Key aspects are the issue of resolving signatures resulting from the same fault but with differing intensities and making the decision tool to decide which a fault occurs [1].
With obtaining fault centroids from same fault data with differing intensities, the fault intensity model and the linear fault boundary model with a learning algorithm, SVM, and loss function were constructed to improve the resolution and evaluate fault intensities approximately.
2. Theory
This study uses the system decomposition method proposed in our previous study [2]. A SDG is a representation of the process casual information, where the process variables and causal relationships are represented as nodes and directed arcs, respectively. The nodes can have values of 0, + or – representing whether or not the cause and effect nodes change in the same or opposite direction.
The SVM is a learning system that uses a hypothesis space of linear function is a high dimensional feature space, trained with a learning algorithm from optimization theory that implements a learning bias derived from statistical learning theory. SVM represents a novel learning technique that has been introduced in the frame work of structural risk minimization (SRM) and in the theory of VC bounds. The SVM method is outlined first for the linearly separable case. Kernel functions are then introduced in order to deal with non-linear decision surfaces. Moreover, for noisy data, when complete separation of the two classes may not be desirable, slack variables are introduced to control the model [3]. In order to handle the process dynamics accurately, the numbers of past values (time lags), l, and the order of the kernel function (polynomial function), d, were determined from the training and testing data.
The PCA is a technique used to reduce multidimensional data sets to lower dimensions for analysis. The applications include exploratory data analysis and for generating predictive models. PCA involves the computation of the eigen value decomposition or singular value decomposition of a data set, usually after mean centering the data for each attribute. The results of a PCA are usually discussed in terms of scores and loadings [4].
3. Fault Diagnosis Strategy
3.1. Off-line Analysis : Local Model Construction
The proposed method based on the decomposition of the process is to predict the values of the target variables in relation to the source variables. The input X and output Y of the model represent the source variables and the target variable in the decomposed process, respectively. Using the relations in the process derived from the SDG, we can access the local models with data-driven approaches. G. Lee et al. [2] implemented DPLS with an SDG for fault diagnosis of a nonlinear process. However, in case of a process containing nonlinearity, there is a limit to which linear model can be used to make an empirical model and identify. From this point of view, the existing linear models are unable to reduce the number of input dimensions when their number is large. On the other hand, the SVM does not need this pre-processing procedure [1]. For these reasons, the SVM was utilized in this study. When a fault occurs in the process, the difference between the predicted values of the target variables and their measured values of target variables can be observed with our proposed models.

Fault detection is performed with residuals, i.e. the difference between the predicted value predicted by the proposed model and the measured value, 
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where ri is the residual of variable i and yi and ŷi are the measured and predicted values of variable i, respectively. After observing the residual and using CUSUM chart, we can assign one of three types of symbol to the residual: +, -, 0. If a fault occurs, we can collect the information of the qualitative state of the residual, and then this information for each fault can be used as a kind of classifiers to identify the fault. If assumed faults are more in contrast with local models, many faults, called as fault candidates, would be selected during fault diagnosis. So it is necessary to construct other models for identifying a true fault among them.
3.2. Off-line Analysis : Fault Intensity and Boundary Model

In order to isolate true fault among selected fault candidates, boundary and intensity models for each fault are prepared based on faulty data. When a fault occurs, we can observe transition states in a faulty condition. When a fault occurs, we can find some candidates. Using source variables connected to each candidate, two main PCs called as fault centroids were extracted for calculating fault centroids as shown in Figure 1. Because source variables related with faults were used, we could obtain a good performance in resolution.
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Because a behavior is unpredictable when a fault occurs in complex plants, it is very difficult to handle faulty data. To predict fault intensities and determine which a fault occurs, data included in specific steady region in a faulty condition should been used. When same fault centroids but with different intensities were plot, we can observe a various pattern in detected target variables. Among these, we could choose target variables to construct fault boundary and intensity model. This point is a key aspect of fault boundary and intensity models. As seen in Figure 1, a center line of fault centroids, called as a hyperplane, can be trained with SVM and a margin, which is a maximum distance from a hyperplane to fault centroids, can be found to construct a fault boundary model.
Figure 1 Centroids and fault boundary with different intensity fault (Line: hyperplane, m: margin)

3.3. On-line Analysis 

As a monitoring method for the purpose of fault detection, we used the CUSUM. As its name implies, the CUSUM chart cumulates deviations of the sample readings from the target or desired value. Once these cumulative summations reach either a high or low threshold, an out-of-control signal is given [1]. Once the residuals are generated from data, we can collect the information of the qualitative state of the residual. Using this information for each fault, we can get the fault candidates based on constructed local model. After obtaining fault centroids of data, fault boundary and intensity models of fault candidates are applied with them. As a result, fault isolation and intensity estimation are finally achieved.
4. A Case Study
The proposed method is applied to the fault diagnosis of process faults in the TE process. The TE process is based on an industrial process, wherein the components, kinetics, and operational conditions were modified for proprietary reasons. The TE process is a control problem proposed by Downs and Vogel (1993) [5] as a challenging test problem for a number of control related topics, including multivariable controller design, optimization, nonlinear control, process diagnostics, and so on. The TE process contains 41 measured and 12 manipulated variables. A total of 15 faulty conditions were simulated.
4.1. Local Model Construction

Table 1 Example of target variables and source variables

	Target variable
	Source variables connected to the target variable

	P7
	F1, F2, F3, F4, F5, L8, T9, P13, F17, YA, YB, YC, YD, YE, YF, YG, YH

	L8
	F1, F2, F3, F4, F5, P7, T9, P13, F14, F17, YA, YC, YD, YE, YF, YG, YH

	T9
	F1, F2, F3, F4, F5, P7, L8, T11, P13, F17, T18, YA, YB, YC, YD, YE, YF, YG, YH


	Table 2 Source variables connected to each fault

	Fault ID
	Source variable connected to the fault

	IDV1
	T18, XA, XC

	IDV2
	T18, XA, XB, XC

	IDV4
	T9, T21, MV10

	IDV5
	T11, T22, MV11

	IDV6

IDV7
	MV3

MV4

	IDV8
	T18, XA, XB, XC

	IDV10 
	T9, T18

	IDV11
	T9, T21, MV10

	IDV12
	T11, T22, MV11

	IDV13
	T9, T11, P13, T18, YA-YH

	IDV14
	T9, T21, MV10


The TE process is decomposed based on the SDG. However, this is very difficult to accomplish, because the TE process contains many variables, reactors and components which are highly and nonlinearly interrelated. This SDG model of the TE process was proposed by G. Lee et al. [2]. This is not an SDG of the whole process, but only a locally reduced SDG, which is comprised of the source variables connected to each target variable. Table 1 shows the local SDG models containing their target variable and source variables. 20 local models used for other variables were built by the SVM using a polynomial function. For example, the local model of the target variable, L8, is constructed as a local SVM model containing 13 input variables of F1, F2, F3, F4, F5, P7, T9, P13, F14, F17, YA, YC, YD, YE, YF, YG, and YH. We aimed to diagnose the 15 faults of IDV1 through IDV15 of TE process. Table 2 shows the relation between 15 faults and target variables. After obtaining residuals between measured variables and predicted ones, and analyzing these with CUSUM, we could diagnose a single fault with these relations shown in Table 2.
4.2. Fault Intensity and Boundary Model Construction
To make fault intensity and boundary model, data with differing intensities were obtained at 0.1 intervals from -1 to 1. At first, we extracted two main PCs from the source variables connected with each fault as shown in Table 2, using PCA. The diagnosis for three cases (IDV3, IDV9, and IDV15) failed, because the fault sizes of these cases were very small and there are only weak variations occurred in the process variables not to diagnose the fault [2]. The simulation time for the faulty data set was 10 h (600 observations). The simulation started with no faults, and the faults started to occur from the 60th step (1 h). As seen in Figure 2, we could find that fault centroids of the steady region in faulty condition moved along the hyperplane. We could construct the fault intensity model, which is expressed as a hyperplane. Also, fault boundary model, which is used for deciding whether a fault is novel or not, would be built. If a fault centroid, obtained from on-line analysis, is located out of boundary, we can conclude this fault as a novel one. 
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Figure 2 Fault centroids of IDV1, IDV2, and IDV8

4.3. Case Study on IDV1
When IDV1 occurs, a step change is induced in the A/C feed ratio in stream 4, which results in a decrease in the A feed in stream 1(XA) and a control loop reacts to increase the variable F1. The variations in the flow rates and compositions of stream 1 to the reactor causes variations in the reactor level (L8), which affects the flow rate in stream 4 (F4) through a cascade control loop. Since, as a result, the ratio of the reactants A and C changes, the distribution of the variables associated with the material valances of the reaction changes correspondingly.
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Figure 3 Dynamics of the detected variables for IDV1
Figure 3 shows the results of detecting IDV1 (intensity = 0.6) with our SVM model. The detected variables are as follow; XA at 79 minutes, XC at 81 minutes, P7 at 91 minutes, P13 at 92 minutes, T9 at 102 minutes, L8 at 103minutes, T18 at 111minutes, and T11 at 113 minutes. The residual states are XA(-), XC(+), P7(+), P13(+), T9(+), L8(+), T18(+), and T11(+). The fault candidates are IDV1, IDV2, and IDV8. The result is same with one of our previous study [2]. To identify IDV1 among fault candidates and predict fault intensity, we used fault boundary and intensity models of IDV1.
The result of fault intensity models for IDV1 is shown in Figure 4. As seen in these, fault intensities were predicted well approximately from 100th step to 200th step. After 200th step, predicted fault intensities are not accurate, since these models were trained with fault centroids of the steady region in faulty condition and the steady region of IDV1 is located from approximately 100th step to 200th step. Also, the result of fault boundary models for IDV1 is shown in Figure 5. In the graph, the value of fault boundary model becomes 1 if fault centroids are in position of IDV1 boundary. Otherwise, the value would be 0. With these results, we could identify that IDV1 is a [image: image4.emf]-0.5
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true fault among fault candidates and obtain the reliable information of fault intensity.

Figure 4 Result of Fault Intensity Model      Figure 5 Result of Fault Boundary Model

for IDV1 (intensity = 0.6)                              for IDV1 (intensity = 0.6)

5. Conclusion
This study proposes an effective framework for process fault diagnosis that can identify a true fault and estimate the intensity. The whole system is decomposed into its local diagnostic models based on the direct causalities of the process variables, and a statistical learning model is developed for each local relation using the data available from the process. Obtaining fault centroids with PCA, fault intensity and boundary models for predefined faults are built. This study investigated the single fault diagnosis of the TE process. To find the relations between the target variables and source variables in the local models, SDG was applied. Then, SVM models were constructed for each local model, and the residuals between the estimated values and the measured variables were produced by the proposed model. After two PCs called as fault centroids were obtained, fault intensity and boundary models were constructed. By analyzing the residuals of each local model, fault candidates were obtained. Using fault intensity and boundary models for each a fault candidate, a true fault could be identified and the value of predicted intensity was obtained. We can verify that the results of the proposed model show an improved accuracy as compared with those of our previous study [3].
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