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Abstract

This work expands the current functionalities of the estimation/reconciliation modules of a novel model-centric framework for integrated decision support of process systems (IDSoPS). The framework has the capability and flexibility to formulate and reformulate all related model-based reconciliation and estimation activities by a user, not familiar with the model of the process and with minimal knowledge of the modeling environment utilized. A novel robust and adaptive estimation/reconciliation environment is created based on the generalized T (GT) distribution for steady-state and dynamic data reconciliation. The GT-based objective function is able to accommodate the error distribution, making the overall estimation/reconciliation entity insensible to the quality of the data. When measurements contain outliers and/or the error does not belong to a normal distribution, the GT-based formulation outperforms conventional methods.
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1. Introduction

High volumes of measurements are taken daily in process industries to be used in process monitoring and further in data reconciliation and optimization with the purpose of improving performance and revenue. Unfortunately, no sensor is able to monitor accurately the variables of interest, so measurements will inevitably contain random errors. Additionally, sensor miscalibration and malfunctioning introduce gross errors into the data affecting considerably the results obtained in advanced activities such as optimization and process control.
The goal of data reconciliation (DR) is to obtain a good set of data by minimizing the error between the measurements and the model predictions (e.g. residuals). Steady state and dynamic applications have been presented by Liebman and Edgar [1], Albuquerque and Biegler [2], and Bagajewicz, Jiang [3], Crowe [4] and Chen and Romagnoli [5], among others. The weighted least squares (WLS) is the objective function most commonly adopted in DR problems. However, the underlying assumption that random errors belong to a normal distribution makes the WLS function highly susceptible to gross errors in the dataset leading to biased estimates. Due to this fact, methods for detecting and correcting abnormal measurements have been developed based, for example, on statistical analysis of residuals and contaminated error distributions [6, 7, 8]. Most of these methods continue to require specific assumptions on the statistical distribution of the errors, usually assumed to be known, which represents a major drawback considering that true values, and consequently errors, are not known in real processes. In this work, a generalized T  distribution [9] is used to obtain a robust objective function for dynamic data reconciliation. With the appropriate selection of the GT parameters or, alternatively, using nonparametric probability density function estimation, the shape of the error distribution can be adjusted prior to or during the reconciliation procedure, making the GT-based formulation insensitive to outliers and applicable when no knowledge exists about the distribution of the measurement errors.
This work expands the current functionalities of the estimation/reconciliation modules of a novel model-centric framework for integrated decision support of process systems (IDSoPS) with the capability and flexibility to formulate all related model-based reconciliation and estimation activities by a user, not familiar with the model of the process and with minimal knowledge of the modeling environment utilized [10, 11]. A novel robust and adaptive estimation/reconciliation environment is created based on the GT distribution for steady-state and dynamic data reconciliation. The GT-based formulation is implemented within the IDSoPS and compared with the contaminated distribution-based formulation and the traditional weighted least squares. The results clearly illustrate that the GT robust formulation has the capability to determine the error distribution, to reconcile highly nonlinear dynamic processes, and to be insensitive to outliers outperforming other conventional approaches. 
This paper is organized as follows. Section 2 gives an overview of the different errors encountered in process measurements; then, it presents a general formulation for dynamic data reconciliation showing how errors are treated and last, it discusses a new approach based on the generalized T distribution for robust dynamic data reconciliation. In section 3, a simulation case study is presented and the results are analyzed. Finally, some conclusions are drawn in chapter 4.
2. Framework for robust data reconciliation
2.1. Error classification

Process measurements inherently contain errors. In the classification adopted in this work, errors are divided in two categories: random errors and gross errors. Random errors are inherent to the sensor being used and are small in magnitude relative to the measurement value. On the other hand, gross errors are defined as abnormal observations present in a dataset and are classified as systematic errors or “biases” and outliers. Biases are generally related to miscalibration of instruments and are presented, in the simplest case, as a consistently high or low value over time for a specific sensor in dynamic systems. Outliers are associated to sensor malfunctioning and unaccounted disturbances and, in dynamic systems, are manifested only at one particular time (i.e. a spike). 
Usually, activities such as optimization and process control make use of fundamental conservation equations in conjunction with plant data. However, because of the presence of errors, measurements are unlikely to satisfy the mass and energy balances and therefore, must be adjusted before the execution of any model-based activity, performing, for example, data reconciliation. A proposed general formulation for the reconciliation problem and its treatment of errors are explained next.
2.2. Dynamic data reconciliation (DDR)
Data reconciliation refers to the estimation of process measurements through the minimization of the error between the measurements and the model predictions (e.g. residuals). Note that only redundant measurements, those for which enough spatial or temporal information is available, can be reconciled. Spatial redundancy relates to the existence of relations among the process (i.e. model) variables; while temporal redundancy refers to the availability of past measurements. Dynamic data reconciliation takes advantage of both spatial and temporal redundancies. In this work, we propose the following general mathematical definition for the estimation/reconciliation problem: 
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In the previous formulation, ((t) represents a generic objective function. The decision variables of the general estimation problem are the vectors , , , ( and . These parametric variables correspond to different features of the overall mathematical model,  are model parameters to be estimated; ,  and ( are associated with the statistical information about the experimental observations, the two former define the intrinsic variance model, ((t), while the latter characterizes the shape of the error distribution as it will be discussed later. Depending on the nature of (t), (t) can be either the variance of the measurement errors or the weight of individual variables within this multivariable objective function. Finally, systematic errors in measurements, , are included in the formulation and explicitly defined in the sensor equation (Eq.(4)) which relates the discrete experimental observations, 
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, with reconciled trajectories, z(t), systematic error,   and random errors, ((t). Random errors as given in Eq.(6) include all parameters which characterizes their statistical distribution. Eq.(2) and Eq.(3) denote the set of partial differential-algebraic equations encompassing the fundamental process model and the set of initial conditions respectively. In these equations x and y represent the differential and algebraic variables respectively, and u(t) the set of input variables. Since a dynamic process is continuous in nature, the reconciliation problem is reduced to a finite-dimensional mathematical problem through the discretization of the input variables.
Over the years, weighted least squares (WLS) has been the most common objective function employed in data reconciliation. However, its poor performance in the presence of outliers requires the reduction of this type of errors. Approaches such as the global, nodal and measurement tests did not include the presence of outliers into the objective function [6], and therefore, they are required of additional procedures (e.g. statistical test and repetition of the reconciliation) to obtain final estimates. Throughout the years, new objective functions have been developed to take into account the presence of outliers in the measurement data directly in the objective function without considerably affecting the final estimates, this is known as robust data reconciliation. In this work, we propose to use a generalized T distribution [9] to perform robust dynamic data reconciliation in the presence of outliers and systematic errors. Results are compared with those obtained utilizing a bivariate objective function based on a contaminated Gaussian distribution. 

2.2.1. The contaminated Gaussian-based objective function 
The bivariate objective function shown in Eq.(7) was initially introduced for steady state data reconciliation by Tjoa and Biegler [8]. Studies have shown that the contaminated Gaussian-based objective function presents better performance than the least squares method [13]. 
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The parameters ( and b are included in the function to represent the probability of outliers in the data and the relative magnitude of outliers to random errors. In Eq.(7), m corresponds to the number of measurements, ( to the residuals standard deviation and ( to the random errors. The presence of outliers can be confirmed by a posteriori analysis of the residuals. 
2.2.2. The generalized T  distribution-based objective function 
The symmetric and unimodal generalized T (GT) distribution is described by the probability density function:
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The parameters (, p and q define the distribution. While ( is associated with dispersion, p and q give the shape of the distribution. B represents the beta function and ( represents the residuals. Initially used in regression problems, this density has the characteristic of defining a broad family of distributions, including the normal distribution (p=2, q((), t-distribution (p=2) and Cauchy distribution (p=2, q=0.5) among others. Larger values of p and q represent thinner tails.
The (-function of the GT distribution is given by the natural log of f(u;(, p, q). The redescending pattern of the influence function or (-function in Eq.(9) suggests that it will be insensible to outliers, that is large values of the residuals (.
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An M-estimator constructed from the influence function of Eq.(9), was successfully applied to steady state data reconciliation [12]. In this work, the robust M-estimator is extended to dynamic data reconciliation as Eq.(10) indicates.
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t0 and tc represent the initial and current time respectively; n is the total number of measurements and z represent the reconciled values. The distributional parameters p and q (and possibly () can be estimated adaptively by two methods. In the first option the parameters are considered as a decision variables in the optimization process. The second method which maximizes the likelihood function evaluated at the residuals of initial state estimates was adopted in this work.
3. Case study

3.1. Process description
The case study considered here consists of an integrated plant of two CSTRs in series and fresh feed mixing with the outlet stream of the first reactor before entering the second vessel [14, 15]. The model was constructed in gPROMS and a simulation was run for a total of 7.5 hours to obtain 75 experimental values. Once the plant was at steady state, a step change in the feed temperature was introduced at 1.5 hours to obtain a dynamic response. This original data set was modified by adding errors from normal, t- and exponential distributions to all variables so that new data sets were formed. Also, additive outliers were incorporated to the data set with normal error distribution. Then, additional data sets were measurement bias (systematic errors) to an output flow rate.
3.2. Results and discussion
Dynamic data reconciliation (DDR) was performed for the sets described previously, using three different objectives functions: weighted least squares (WLS), the one based on the contaminated normal (CN) distribution, and the one based on the generalized t (GT) distribution. Results for DDR were obtained using the sequential solution approach available in gPROMS. This involves state-and-sensitivity integration of the augmented model-plus-sensitivity system followed by solution of a finite-dimensional NLP, in an iterative fashion (SQP-NLP).
The values of the mean squared error (MSE) and total error reduction (TER) for the three objectives functions considered in the absence of systematic errors are presented in Table 1 (TER values are shown in parenthesis). The results suggest that there are not significant differences in the performance of the three methods when the residuals belong to a normal distribution and no outliers are present. However, the GT-based objective function displays its superiority over WLS and CN when outliers are present or the residuals belong to different distributions. In fact, the values of p and q obtained were 2 and 100 in the absence of outliers (normal and t-distributions), 2 and 50 with outliers, and 1 and 50 for residuals from an exponential distribution. Clearly, the objective function has accommodated the shape of the error distribution, with lower value of q for thicker tails. Fig. 1 presents the MSE results without outliers for easier visualization.
Table 1: MSE results for dynamic data reconciliation of integrated plant of two CSTRs

	Error distribution
	WLS
	CN
	GT

	Normal
	No outliers
	4.59 (0.969)
	4.06 (0.973)
	4.05 (0.973)

	
	Outliers
	70.72 (0.589)
	59.02 (0.657)
	8.27 (0.952)

	t-distribution
	19.91 (0.142)
	16.08 (0.307)
	8.37 (0.639)

	Exponential distribution
	10.40 (0.992)
	10.18 (0.992)
	6.44 (0.994)


In a second analysis, the presence of systematic errors was evaluated. For this purpose, a bias of -0.639 was incorporated to an output flow rate measurement for the dataset containing t-distributed residuals. 
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Figure 1: TER results for different objective functions and error distributions. Left: in absence of outliers. Right: with outliers.
The results presented in table 2 indicate that biases are estimated accurately with no significant differences among the objective functions. Although all three methods show deterioration on the MSE values, the objective function based on the GT distribution continues to display better results.
Table 2: Bias estimates and MSE values for dynamic data reconciliation of integrated plant 
	Objective function
	Estimated bias

(true value = -0.639)
	MSE

	WLSQ
	-0.696
	20.06

	CN
	-0.694
	20.52

	GT
	-0.695
	19.89


4. Conclusions

Objectives functions based on the contaminated normal distribution (CN) and on the generalized t (GT) distribution were implemented for robust dynamic data reconciliation within a single and consistent model-centric framework for integrated decision support of process systems (IDSoPS). Results indicate that the GT-based objective function outperforms the CN and the least squares when errors deviate from normality and/or outliers are present in the measurement set. The incorporation of online capabilities and methodologies for analysis of redundancy in nonlinear dynamic systems are currently under study.
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