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Abstract

This work addresses the control problem of a continuous stirred tank reactor to produce polystyrene at high temperature via free radicals. Because of the nonlinear feature of the three inputs-two outputs reactor, a nonlinear geometric approach that allows systematic construction and tuning was followed to analyze two control configurations. The first is a conventional scheme that considers two inputs driven by the two outputs and profit the stable feature of the reactor. The second is an inferential one that considers the three inputs driven by the two outputs and one state estimate. The results show that both control schemes adequately control the reactor; however, the inferential scheme showed the best performance. 
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1. Introduction
Low average molecular weight polymers with reduced content of VOCs are obtained via free radical high temperature polymerization in stirred tank reactors; such polymers are used as dispersers, tensoactives, macromonomers and plastifyers in the industry of coatings, adhesives, paper, cosmetics and cleaning products. Since these kind of processes are typically carried out at batch operation, we are interested in realizing a continuous one in order to reduce capital and operation cost. We particularly set in motion with the basic one: styrene polymerization at high temperature.
Recent studies on high temperature styrene polymerization [1] have provided suitable models for polystyrene reactor simulation; thus, design, control and optimization of this process can be achieved at more economical rates than when performing direct experiments. Regarding control, the challenge is not easy due to the nonlinear characteristics that any polymerization reactor exhibits [2], i.e. parametric sensitivity, steady-state multiplicity, potential runaway, and open-loop unstable steady states. Besides, on-line measurements such as the related with conversion or product quality are not always available, and in many cases the engineers have to rely on infrequent laboratory analysis of reactor samples. Then, in an  industrial framework, the polymer reactors are operated around stable steady states where on-line measured variables (i.e., temperature and volume) are controlled with conventional loops, and the conversion control (and product quality) is achieved with advisory or supervisory schemes [3], and feedforward [2] or inferential [3] ones are suggested.
Then, for the above mentioned process, and considering the available and practical on-line measurements and control inputs, this work explores in a nonlinear framework [4] two different control configurations: (i) a conventional 2 inputs-2 outputs loop, and (ii) an inferential 3 inputs-2outputs scheme.
2. The Polymerization Reactor and the Control Problem

For this work, a continuous stirred tank reactor where free radical styrene polymerization takes place was considered. The reaction, which is exothermic, is carried out at high temperature, enabling heat exchange by a heating/cooling jacket. The reactor dynamics are described by a set of three nonlinear differential equations that results from material and energy balances, and polymerization kinetics arguments [1],
EQ \o(M,.)  = (1 - ( EQ \f(M,Mo)) RM(M, T) + EQ \f(qe,V) (Me – M) := fM(.)



(1a)
EQ \o(T,.) = EQ \f((-(HR ),((T) cp) RP(M, T) – EQ \f(U A,V ( cp) (T – Tc) + EQ \f(qe,V) EQ \f((e(Te),((T)) (Te – T) := fT(.),
yT = T
(1b)

EQ \o(V,.) = EQ \f((,Mo) RM(M, T) V + qe – qs := fV(.)



yv = V
(1c)
This reactor has three states: monomer concentration (M), temperature (T), and volume (V); two outputs: temperature measurement (yT), and volume measurement (yv); four inputs: monomer feed rate (qe), coolant jacket temperature (Tc), product flowrate (qs), and monomer feed temperature (Te). RP is the polymerization rate, and RM is the rate of monomer consumption; and the thermophysics and equipment characteristics are given through the monomer contraction factor ((), the pure monomer concentration (Mo),  the polymer density (() which depends on T, the monomer density ((e) which depends on Te, the polymerization heat (-(HR), the heat exchange area (A), and the global heat exchange coefficient (U).
At a given V, and by solving for M and T the algebraic equations that result from equating to zero its corresponding change rate functions [fM(.), fT(.) = 0], it can be verified that for any Tc the reactor exhibits two steady states; and evaluating the eigenvalues of the Jacobian constructed with the change rate functions, it can be determined that the steady state with the higher T is unstable, and the other one is stable. On the other hand, solving only for M, at any T, the reactor exhibits only one stable steady state. 
This means that this reactor is stabilizable by a conventional control loop (CCL) (Fig. 1a) of 2 inputs-2 outputs, where Tc and qs are manipulated to control T and V, respectively; although M is not measured, it is controlled via its stable feature. In case disturbance is present, the time response of CCL depends on the natural time response of M-dynamics (Eq. 1a), but if M was on-line known, it could be assumed that a faster response would be obtained by also manipulating qe. Then, an inferential control scheme (ICS) (Fig. 1b) of 3 inputs-2 outputs appears, in which M is inferred with an observer  and feedback to the controller.
Then, the control problem lies in obtaining the controller for the CCL, and the controller and observer for the ICS, to operate the reactor in a certain (possibly open-loop unstable) nominal state (EQ \O(M,_), EQ \O(T,_), EQ \O(V,_)) associated to a set of nominal operation conditions (EQ \O(q,_)e, EQ \O(T,_)c, EQ \O(q,_)s, EQ \O(T,_)e); subsequently, in evaluating the benefits of both schemes.
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Figure 1a. Conventional Control Loop
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Figure 1b. Inferential Control Scheme
3. The Control Systems Design

In accordance with the nonlinear nature of the process, a nonlinear state-feedback (SF) linearization approach [4] was applied to design both control systems. This was chosen because the construction and tuning of both, controllers and observers, is systematic, assuming it will provide comparison view points between the control systems. Compact notation is used to present the methodology; next, the reactor model takes the form:

EQ \o(x,.) = f(x, u, d,  p),     y = A x






(2a)
x = [M, T, V]’,     y = [yT, yV]’,     p = [model parameters; i.e., (, -(HR, …]’
(2b)
f(.) = [fM(.), fT(.), fV(.)]’,     A = [(0, 1, 0), (0, 0, 1)]’ 



(2c)
for CCL (Fig. 1a):     u = [Tc, qs]’          and     d = [qe, Te]’


(2d)
for ICS (Fig. 1b):
     u = [qe, Tc, qs]’     and     d = Te



(2e)
fM, fT, and fV are given in Eq. (1), and EQ \O((,_) denotes the nominal value of any variable (.

3.1. The Conventional Control Loop
As a first step, the possibility of constructing the controller is established by recalling the Theorem 1 in [4]. It is found that the solvability of the control problem is based on:
(i) the relative degrees associated to the input-output pairs (Tc, yT) and (qs, yV) are 1;
(ii) the map (I(x) = [T, V]’ is trivially u-independent;
(iii) the map ( = [(I, M]’ is trivially x-invertible;
(iv) the map ((x, u) = [fT(.), fV(.)]T is u-invertible;
(v) any steady state is the unique and stable state of the M-dynamics (Eq. 1a).
These solvability conditions settle that the control problem of the reactor is solved with partial SF linearization (via the ( map), generating a time-varying algebraic equation (Eq. 3), whose u-solution, together with the M-dynamics, forms the controller (Eq. 4):
((x, u) = ((y, EQ \O(x,_), KEQ \o\al(c,P), KEQ \o\al(c,I)),     ((.) = KEQ \o\al(c,P) (y – A EQ \O(x,_)) + c,I)EQ \i\in(0,t,K (y – A EQ \O(x,_)) dt)
,

(3)

u = (-1(xc, ((y, EQ \O(x,_), KEQ \o\al(c,P), KEQ \o\al(c,I))),     EQ \o(\o(M,^),.) = fM(xc, EQ \O(q,_)e),     x is replaced by xc = [EQ \o(M,^), yT, yV]’
(4a, b)
KEQ \o\al(c,P) = bd[kEQ \o\al(Pc,T), kEQ \o\al(Pc,V)]’,     KEQ \o\al(c,I) = bd[kEQ \o\al(Ic,T), kEQ \o\al(Ic,V)]’,              bd.- block diagonal matrix
(4c)
It can be noticed that the controller also consists of an open-loop observer (Eq. 4b) that provides an estimate (EQ \o(M,^)) of M. ( is the PI-control law for the inputs of the reactor in its SF linearized form, where KEQ \o\al(c,P) and KEQ \o\al(c,I) are the proportional and integral control gains, respectively. The gain entries are the coefficients of the output dynamics (Eq. 5) of the closed loop reactor in its SF linearized form, that are matched with pole-assignable (adjustable) stable linear dynamics of reference (Eq. 6), in such a way the gains take defined forms given by Eq. (7):
EQ \o((,..)i – kEQ \o\al(Pc,i) EQ \o((,.)i – kEQ \o\al(Ic,i) (i = 0,     ( = yi – EQ \O(i,_),     i = T, V



(5a)
EQ \o(r,..)i + 2 (EQ \o\al(c,i) (EQ \o\al(c,i) EQ \o(r,.)i + (EQ \o\al(c,i) 2 ri = 0,






(5b)
kEQ \o\al(Pc,i) = – 2 (EQ \o\al(c,i) (EQ \o\al(c,i),     kEQ \o\al(Ic,i) = – (EQ \o\al(c,i) 2;
(EQ \o\al(c,i) = sEQ \o\al(c,i) (EQ \o\al(cR,i)



(5c)
(EQ \o\al(c,i) is the damping factor, (EQ \o\al(c,i) is the characteristic frequency, and sEQ \o\al(c,i) is an accelerating factor of the reference characteristic frequency (EQ \o\al(cR,i). In this way, once (EQ \o\al(c,i) and (EQ \o\al(cR,i) are chosen, sEQ \o\al(c,i) becomes the unique tuning parameter for each i-dynamics.
Finally, the closed loop reactor (or the CCL) is given by the coupling of the model-based controller (Eq. 4) to the reactor (Eq. 1).

3.2. The Inferential Control Scheme
3.2.1. Observer Construction and Tuning

The problem of infering M (or properly speaking, the complete reactor state) through the measurements (y) is solved on the basis of the following geometric considerations:
(i) the observability indices corresponding to yT and yV are 2 and 1, respectively;
(ii) the observability map (o(x, u) = [T, fT(.), V]’ is x-invertible;
(iii) the map (o(x, u) = [(xfT(.)*f(.), fV(.)]’ is continuous in the range values of x and u.
Then, the reactor is said to be observable, allowing the straightforward application of Eq. (13) in [4] that yields the observer:

EQ \o((,.) = f((, u) + GP((, u, KEQ \o\al(o,P)) (y – A() + GI((, u, KEQ \o\al(o,I)) (I,     ( = [EQ \o(M,^), EQ \o(T,^), EQ \o(V,^)]’

(6a)
EQ \o((,.)I = y – A(,          (I = [(EQ \o\al(T,I), (EQ \o\al(V,I)]’





(6b)
GP((, u, KEQ \o\al(o,P)) = [(x(o(x, u)]–1 KEQ \o\al(o,P),   GI((, u, KEQ \o\al(o,I)) = [(x(o(x, u)]–1 [(0, 1), 1]’ KEQ \o\al(o,I)
(6c)
KEQ \o\al(o,P) = [[kEQ \o\al(Po,T1), 0], [kEQ \o\al(Po,T2), 0], [0, kEQ \o\al(Po,V)]]’,
KEQ \o\al(o,I) = [[kEQ \o\al(Io,T), 0], [0, kEQ \o\al(Io,V)]]’


(6d)
where ( is the state estimate, and (I is the extended states set to calculate the integral of the estimation error. GP and GI are regarded as nonlinear proportional and integral gains for the correction terms, respectively; and KEQ \o\al(o,P) and KEQ \o\al(o,I) are constant ones resulting from the linear observer of the reactor in its SF linearized (via the (o map) form.
Similar to the tuning of the CCL-controller, the entries of the observer gains are the coefficients of the output estimate (() dynamics (Eq. 7) of the reactor in its SF linearized form; these dynamics are matched to reference adjustable linear dynamics (Eq. 8), in such a way the gains take the form defined by Eq. (9), where the “accelerating” tuning parameters (sEQ \o\al(o,T), sEQ \o\al(o,V)) remain uniques once the damping factors ((EQ \o\al(o,T), (EQ \o\al(o,V)) and the reference characteristic frequencies ((EQ \o\al(o,T),(EQ \o\al(o,V)) are chosen:

EQ \o((,...)T + kEQ \o\al(Po,T1) EQ \o((,..)T + kEQ \o\al(Po,T2) EQ \o((,.)V + kEQ \o\al(Io,T) (T = 0,

(T = yT – EQ \o(T,^),


(7a)
EQ \o((,..)V + kEQ \o\al(Po,V) EQ \o((,.)V + kEQ \o\al(Io,V) (V = 0,


(V = yV – EQ \o(V,^),


(7b)

EQ \o(r,…)T + (2 (EQ \o\al(o,T) + 1) (EQ \o\al(o,T) EQ \o(r,..)T + (2 (EQ \o\al(o,T) + 1) (EQ \o\al(o,T)2 EQ \o(r,.)T + (EQ \o\al(o,T)3 rT = 0,



(8a)

EQ \o(r,..)V + 2 (EQ \o\al(o,V) (EQ \o\al(o,V) EQ \o(r,.)V + (EQ \o\al(o,V)2 rV = 0,





(8b)

kEQ \o\al(Po,T1) = (2 (EQ \o\al(o,T) + 1) (EQ \o\al(o,T),     kEQ \o\al(Po,T2) = (2 (EQ \o\al(o,T) + 1) (EQ \o\al(o,T) 2,     kEQ \o\al(Io,T) = (EQ \o\al(o,T) 3,     (EQ \o\al(o,T) = sEQ \o\al(o,T) (EQ \o\al(oR,T)

(9a)
kEQ \o\al(Po,V) = 2 (EQ \o\al(o,V) (EQ \o\al(o,V),     kEQ \o\al(Io,V) = (EQ \o\al(o,V) 2,    (EQ \o\al(o,V) = sEQ \o\al(o,V) (EQ \o\al(oR,V)




(9b)
3.2.2. Controller Construction and Tuning
For the controller construction purpose, M is considered also measured (yM = M), then yICS = [yM, yT, yV]’. Next, the solvability of the control problem is settled by:
(i) the relative degrees associated to the input-output pairs (qe, yM), (Tc, yT) and (qs, yV) are all equal to 1;
(ii) the map ((x) = x (since ((x) = (I(x)) is trivially u-independent and x-invertible;
(iii) the map ((x, u) = [fM(.), fT(.), fV(.)]’ is continuous and u-invertible.
The above means that the control problem is solvable with complete SF linearization (via the ( map) that yields the following controller (by applying Eq. (8) in [4]):

u = (-1(yICS, ((y, EQ \O(x,_), KEQ \o\al(c,P), KEQ \o\al(c,I))),          ((.) = KEQ \o\al(c,P) (y – A EQ \O(x,_)) + c,I)EQ \i\in(0,t,K (y – A EQ \O(x,_)) dt)


(10a)
KEQ \o\al(c,P) = bd[kEQ \o\al(Pc,M), kEQ \o\al(Pc,T), kEQ \o\al(Pc,V)]’,     KEQ \o\al(c,I) = bd[kEQ \o\al(Ic,M), kEQ \o\al(Ic,T), kEQ \o\al(Ic,V)]’




(10b)

The tuning of the control gains is done in the same way that in the CCL-controller. Then the gains are given by Eq. (5c), but for this control scheme i = M, T, V.
3.2.3. The Control Loop

Finally the closed loop reactor (or the ICS) is formed with the coupling of the observer (Eq. 6), the controller (Eq. 10, replacing y by (), and the reactor (Eq. 1). 
4. Example

To test the control systems, it was considered a reactor with nominal operation conditions associated to an unstable steady state, (EQ \O(M,_), EQ \O(T,_), EQ \O(V,_), EQ \O(q,_)e, EQ \O(T,_)c, EQ \O(q,_)s, EQ \O(T,_)e) = (0.466 mol-g/L, 330 °C, 100 L, 1.67 L/min, 200 °C, 0.97 L/min, 30 °C,), and a residence time ( = 60 min. In order to emulate the operational problems that appear in an industrial framework (i.e., change in reactor characteristics due to jacket fouling or different raw material providers), the original parameter values are hold for the controllers and the observer, and parameter errors are introduced for the reactor; these errors imply a ( 5% underestimation of the polymerization and monomer comsumption rates, a ( 10% overestimation of the capacity heat removal, and a ( 10% underestimation of the density of the product. On the other hand, along the time, the mentioned operational problems would drive the reactor to another steady-state if nominal inputs were kept; then, the purpose of the controller is to determine new final values of the control inputs (i.e., qe, Tc, qs) for maintaining the original nominal steady-state. 
In Fig. 2 is shown the performance of the both control schemes with the following tuning parameters: (EQ \o\al(o,T), (EQ \o\al(o,V), (EQ \o\al(c,M), (EQ \o\al(c,T), (EQ \o\al(c,V) = 0.62; (EQ \o\al(cR,M), (EQ \o\al(cR,T), (EQ \o\al(cR,V), (EQ \o\al(oR,T), (EQ \o\al(oR,V) = 4/(; sEQ \o\al(o,T) = 10, sEQ \o\al(o,V) = 10; and sEQ \o\al(c,M) = 5, sEQ \o\al(c,T) = 3, sEQ \o\al(c,V) = 1.5. It must be noticed that the same values of the tuning parameters for the controllers of both scheme are used; in this sense, it can be appreciated the operational comparison view point provided by the design approach. Both control schemes adequately manage to maintain the operation at the nominal state; although there is an offset in M, this is practically insignificant; it can be noticed that the response times for T and V correspond to the settling time of the output dynamics (Eqs. 5). The T and Tc overshoots in CCL are greater than those in ICS, and the M time response in ICS is lower than that in CCL, as expected. Then, there is a less control effort in ICS than in CCL.
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Figure 1. Performance of the Control System 1 (–*–), and of the Control System 2 (–o–) 
5. Conclusions

This work addressed the design of two control systems for a high temperature styrene polymerization: a 2 input-2 output loop, and a 3 input-2 output loop. The applied geometric approach provided a same framework of systematic construction, tuning and performance comparison of both control systems. The 3 input-2 output scheme was better in the sense that requieres less control effort; however,  it requires more computational effort. 
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