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Abstract
Since oil and gas production is moving to deeper waters, subsea pipelines are being subjected to higher pressures and lower temperatures. Under such conditions, the formation of hydrates is promoted. Hydrates are solid, non-flowing compounds of gas and water whose formation can cause line blockages, with the consequent economical losses and safety risks. The increasing hydrate formation propensity suggests the necessity to predict the possibility of hydrate formation in on-line operation so as to take preventive control actions and thereby provide flow assurance. Although a detailed dynamic model will enable the prediction of the possibility of hydrate formation, model inaccuracies and process disturbances will make this prediction less accurate. The usage of key available measurements will enable to address these disadvantages. The aim of this paper is to develop a combined state and parameter estimator for this process, by combining a dynamic model with available measurements.
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1. Introduction 
As the readily accessible oil and gas reserves are becoming exhausted, it is necessary to be able to consider oil fields prone to more severe conditions and from more remote locations. This includes oil fields previously considered to be uneconomical, like those in deep ocean environments, which are subjected to high pressures and low temperatures. Such extreme conditions promote the formation of a solid non-stoichiometric compound of gas and water – the so-called clathrate of natural gas, or more commonly known as gas hydrates [1]. When hydrates form, they block transmission lines, causing important economic losses due to the production stoppage.
It would be ideal to operate the pipeline outside the hydrate formation envelop. However, as mentioned above, the high pressures and low temperatures associated to less accessible reserves leave the pipelines within the hydrate formation region [2]. Therefore, the ability to predict formation of hydrates in the field will play a vital role in exploiting these reserves. The aim of this study is to develop a combined state and parameter estimator for this process as a means for the prediction of hydrate formation towards preventive feedforward control.
The present focus is on the gas-liquid flow riser. The model used is a complex nonlinear infinite-dimensional system accounting for momentum, mass and energy balances [3], and the measurements available include temperature and pressure at different locations along the riser. Since the problem being tackled is of distributed parameter nature, location where such measurements are taken, along with its type, is crucial for estimator performance. Moving horizon estimation (MHE) is well suited as it facilitates the sensor structure selection (both in a dynamic and static sense). MHE is proven to outperform the Kalman classic approach with greater robustness to both bad initial state guess and poor tuning parameters [4, 5]. Besides, MHE framework naturally handles most of the challenges of state estimation as applied to real systems, such as constraints and nonlinearities [4, 5].
However, solving the optimisation that underlies the MHE formulation at each sampling interval becomes too expensive in such a complex system, making it necessary to reduce the computational requirements. Particle filtering (PF) is a fairly new and promising class of state estimator that provides a recursive Bayesian approach to dynamic estimation in nonlinear systems, based on sequential Monte Carlo techniques. Although very fast and easy to implement, their ability to converge under poor priors (initially-specified regime of the uncertain states and parameters) is unproven. Thus, it becomes advantageous to combine the robustness of MHE with regard to good initial guesses and a convenient sensor structure on the one hand, and the speed of PF on the other hand to solve the combined state and parameter estimation problem [6, 7]. 
The MHE and PF frameworks will be demonstrated separately for a simpler problem involving the Van der Vusse reactor, before tackling the hydrate formation problem in the complete oil and gas production system. Future work will consider the individual and the hybrid frameworks for the hydrate prediction problem. 
2. Methodology
The state estimation problem is to determine an estimate of the state x(T) given the chosen model structure and a sequence of observations (measurements) of the system Y(T) = { y(0),…, y(T)}. 
2.1. Moving horizon estimation
Moving horizon estimation is a practical strategy for designing state estimators by means of online optimization, which allows one to include constraints and nonlinearities in the state estimation [8]. In order to improve the estimation procedure, imperfect models can be augmented with other physical information, such as constraints on states variables, process disturbances or model parameters. Many process uncertainties are bounded, as well as state variables, which are also almost always positive. Unlike the process uncertainties, constraints on state variables are implicitly enforced by the model of the process, but it is not rare to face approximate models where this implicit enforcement may fail. Then, the inclusion of constraints is needed also on the state variables so as to reconcile the approximate model with the process measurements.
The online solution of this constrained estimation problem, known as full information estimator because we consider all the available measurements, is formulated as an optimization problem – typically posed as a least squares mathematical program- subject to the model constraints and inequality constraints that represents bounds on variables or equations.
Although online optimization allows constraints on estimates as part of the problem formulation, formulating a state estimation problem with inequality constraints prevents recursive solutions as Kalman filter, and therefore, the estimation problem grows with time as more measurements become available. The computational complexity scales at least linearly with time, and consequently, the online solution is impractical due to the increasing computational load, necessitating bounds on the size of the mathematical program. To make the problem tractable, the strategy adopted is to reformulate the problem using a moving, fixed-size estimation window by breaking the time interval into two pieces. Thus, in moving horizon estimation we account explicitly only for the second part of the time interval, while the remaining process measurements are compactly summarized using a function named arrival cost, responsible for transforming the unbounded mathematical problem into an equivalent fixed-dimension mathematical program [8, 9]. Assuming the discrete model is readily available, the following is a simple mathematical formulation of the problem
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Where xk are state variables, wk and vk are the model and process disturbances, respectively, Lk is a stage cost function and ZT-N (z) is the arrival cost function. A discrete-time model is adopted in the above formulation for illustrative purposes. A continuous-time model can also be used. 
2.2. Particle Filtering 

From a Bayesian interpretation, MHE and the extended Kalman filter assume normal or uniform distributions for the prior and the likelihood. Unfortunately, these assumptions are easily violated by nonlinear dynamic systems in which the conditional density is generally asymmetric, potentially multimodal and can vary significantly with time.
Unlike other nonlinear estimation methods, particle filtering (PF) allows to solve the online estimation problems without any assumption about the dynamics and shape of the conditional density. Bayes’ rule provides the theoretical background to integrate the past information or prior, with the current information or likelihood. The core idea is to represent the required conditional density of the states as a set of random samples (particles), rather than as a function over state space. The algorithm starts with a randomly generated set of samples at the first point, and propagates these samples to produce future distributions. Samples representing the prior are generated as the prediction of the state passing samples from the posterior at the previous step through the state equation. Hence, this prediction step utilises information about process dynamics and model accuracy without making any assumption about any characteristics of the distributions. Alike, once the measurement is available, the posterior is obtained as the correction of the state using the updated prior and the measurement (likelihood) itself. Therefore, this correction step utilises the measurement model and information about the measurement error, again without requiring any assumptions about the distributions. At this stage, solving the estimation problem is simply a matter of selecting a representative sample such as a mean, mode or median from the samples representing the posterior [6, 7]. 
2.3. Combination of MHE and PF 
Solving the optimisation that underlies the MHE formulation at each sampling interval becomes too expensive in a complex system, making it necessary to reduce the computational requirements. Particle filtering (PF) is a fairly new and promising class of state estimator that provides a recursive Bayesian solution to estimation in nonlinear systems based on sequential Monte Carlo techniques. Although very fast and easy to implement, PF is more sensitive to poor initial guesses, because it means that there is little overlap between the particles representing the initial prior and the likelihood obtained from the measurements. Due to the limited number of particles, the posterior distribution is often less accurate than that obtained by methods that rely on an approximate but continuous prior distribution. Thus, it becomes advantageous to combine the robustness of MHE with regard to good initial guesses and a convenient sensor structure on the one hand, and the speed of PF on the other hand to solve the combined state and parameter estimation problem. This promising combined strategy will be explored in the future [7]. 
3. Case study 
The MHE and PF frameworks will be demonstrated separately for a simpler problem involving the well studied nonlinear benchmark problem of the Van der Vusse scheme [10]: a feed stream of feedstock A enters a reactor and reacts to form the desired product, B. The model assumes a first order reaction for the conversion of A into B, with two competing reactions B→C and 2A→D. Temperature-dependent Arrhenius reaction rates are assumed. The model has four states: concentration of A, concentration of B, reactor temperature, and cooling jacket temperature. 
3.1. Moving horizon estimation

For this case of study, it is supposed that the four states are directly measurable. The estimation problem is posed as a least squares objective function subject to the model nonlinear differential equations as constraints, restricting the mathematical program to the size of the moving window, and therefore ignoring the data outside such window.

A model-process mismatch is introduced by using a E/R value in the Arrhenius Law of the first order (A → B) reaction of -9658.3 K instead of the nominal value (-9758.3 K). The initial state is x0 =[2.14; 1.09; 387.15; 385.15] and the estimator is implemented with a window length of 50 samples (measurements are taken every 10 seconds) and the prior guess x =[2.34; 1.29; 392.15; 390.15]. Noise is added to the measurements with mean zero and variance 0.5 for the temperatures and 0.01 for the concentrations. Figure 1 shows the model prediction, the actual values (measurements) and the MHE prediction for the four states. 
3.2. Particle filtering

The particle filter is implemented with 100 particles at the same conditions used for the MHE. Figure 2 shows the model prediction, the actual values (measurements) and the PF prediction for the four states.
As can be seen from the two figures, the moving horizon estimator recovers much faster than the particle filter from the bad prior guess. The price of this higher robustness is the greater computational expense required to solve the MHE optimisation. 
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Figure 1. Moving horizon estimation
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Figure 2. Particle filter state estimation
4. Conclusion and future research
State estimation has been proposed as a way to improve our ability to predict hydrate formation in subsea pipelines. PF and MHE, state-of-the-art state estimation methods, have been reviewed and tested with a simple example case study with satisfactory results. Strategies based on both MHE and PF are being tested at present. The ultimate aim is to develop an efficient observer by relying on the robustness and the optimisation-based approach of MHE to provide initial guesses on the one hand, and the speed of PF on the other hand to solve the state and parameter estimation problem. 
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