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Abstract

Plant supervisory control systems require reliable management of multiple independent faults, which is crucial for supporting plant operators’ decision-making. Towards this end, the MultiLabel approach with Support Vector Machines (ML&SVM) as base learning algorithm has been recently proposed for addressing the problem of simultaneous fault diagnosis in chemical processes using training sets consisting only of single faults data. A new approach for improving fault diagnosis performance has been proposed consisting of: feature extension using standard deviation and linear trend of the data sets, feature reduction applying Genetic Algorithms (GA), and the application of the selected features to the new training set. The diagnosis performance was tested on the Tennessee Eastman benchmark and it was measured and compared using the F1index. Very good results were obtained for the diagnosis of 17 of the 20 faults of the case study, while three faults (3, 9 and 15) could not be properly classified. Hence, capability and limitations of the approach are finally discussed.
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1. Introduction

Chemical industries have always been very much concerned about the different ways and techniques for reducing the risk of accidents because they may result in public damage and large economic losses. Since fault prediction has been addressed as one of the best way for preventing industry accidents, many kinds of data-based fault diagnosis and detection methods have been studied.

Fault diagnosis is a multi-class problem that can be addressed by classifying samples in only one class (the mono-label problem, ml) or in more than one (the multi-label problem, ML). The use of the ML approach allows building independent models for each fault, using independent classifiers [1]. This property allows representing the training information in a different way for each fault. Hence, it is also possible representing the training information in the most suitable way for each binary classifier, thus improving the general performance of the whole learning system. This poses the problem of determining the best information representation for each fault instead of for the whole data set. This should not be regarded as a simplifying divide-and-conquer approach, but inversely, as a more specific, accurate and flexible training of the fault diagnosis system.

The Fault Diagnosis System (FDS) is implemented using Support Vector Machines (SVM) because of its proved efficiency dealing with ML problems in other areas. SVM is a kernel-based algorithm aimed at margin maximization. Its learning bias has proved to have good properties regarding generalization bounds and noise and outlier tolerance for the induced classifiers. The diagnosis performance is measured using the normalized F1 index because it encompasses the precision and recall concepts, as well as for its wide acceptation in the Machine-Learning field. In addition, a methodology has been applied for improving the fault diagnosis performance, consisting of attributes extension and then the best attributes selection for each class. 

The procedure for searching the best set of attributes is implemented using Genetic Algorithms (GA) because of their flexibility and robustness, as well as for their inherent capacity for operating with black-box models. Besides, GA is on of the most accepted algorithms in the Machine-learning field for parameter tuning and feature selection. This scheme is tested by addressing all 20 faults from the Tennessee-Eastman case [2].

2. Problem statement and methodology

This work addresses information representation by means of attributes (or features). First, consider raw data sets composed by the number of S samples and A0,f attributes corresponding to the different process variables. Each of these sets corresponds to the f=1,2,…F faults (classes) to be diagnosed in each case. From the raw data sets, a unique original sample set has been produced composed of random samples containing all the process classes. This original sample set has been divided into 2 sets: the original training set and the original testing set (Fig1).

The performance optimization problem is defined for each binary classifier f by the determination of the set of attributes that maximizes the right guesses achieved when diagnosing the validation set. Assuming a good generalization of the learning algorithm, this optimization process will also lead to the maximization of the diagnosis performance in the case of the test set as well as new data. The normalized quantification of this performance is given by the F1 index, which encompasses both precision and recall [1, 3].
The methodology proposed for solving the problem consists of a first feature extension step followed by a feature selection step. The learning algorithm used at both steps is SVM with lineal kernel and default soft margin value. The learning is carried out under the multiclass and ML approach. These steps are explained in the next sections.

2.1. Feature extension

The first step (Fig.1) consists of generating new attributes that are not explicitly included in the process measurements and that may enhance the characterization of the dynamic behavior of the process. These new attributes, such as the standard deviation and the derivatives or the trend of a given time window, produce an expanded data set that may provide valuable information to the learning algorithm. 

Two consecutive feature extensions (ext1 and ext2) are considered in this work. The first one produces a extended data set (training and testing) consisting of the A0,f original attributes plus the A0,f standard deviation values for each sample (Aext1,f =2 A0,f), once given a time window. The second extension adds to the previous set the linear trend (least squares) of the values in the same time window, thus Aext2,f =3 A0,f. For both extensions the window is set to the sample plus the previous 19 (20 in total).

2.2. Feature selection

Feature selection and reduction is an optimization problem addressed with Genetic Algorithms. The principal reasons for doing this step are the possible computational cost reduction for next steps and the reduction of noise and redundant information.

Feature selection is defined in the machine learning as the determination of the best sub-set of attributes for each binary classifier. Hence, the extended training set is divided in 2 subsets: the training and the validation sets (second step in Fig. 1). These optimization sets are employed to perform the feature selection using GA (third step in Fig. 1).

Genetic Algorithms as part of the feature selection step of the methodology for the improvement of the Fault Diagnosis performance were applied to the optimization data sets (coming from the partitioning of the training set with the extended attributes) for reducing the computational time, finding a good fair representation and reducing noise and redundant features. This is the way in which feature selection is performed in the Machine-learning field due to generalization issues. Induced classifiers are built to treat new data but the feature selection might produce “overfitting” that causes the generalization behavior decreasing.
2.3. Application of the ML and SVM to the features selected

Once, a training set with the best features for each class is obtained from the previous step by the aid of the GA, this last training set is applied to the SVM, for getting a better performance and fault diagnosis. Figure 1 summarizes all the steps of the methodology explained above.
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Fig 1.Methodology applied for the performance improvement fault diagnosis (Parenthesis is used for indicating the number of attributes used in the case study).

3. Case study and results

The proposed Fault diagnosis approach is tested using the Tennessee Eastman Process [2]. This benchmark consists of 52 process variables (attributes) and 20 faults (classes) to be diagnosed. Simulation runs have been carried out for obtaining source data sets composed by 180000 samples. The original sample set is derived from these raw data sets and it is composed of 30051 random samples containing the 20 classes. Next, this set is divided into one with 7811 samples (26%) and other with 22240 samples (74%), which correspond to the original training and testing sets respectively. The subsequent extended sets are made up of the same samples and more attributes. For feature selection, the extended training set is divided into two sets of 5864 samples (75%) and 1947 samples (25%), which correspond to the training and validation sets respectively.    

For comparing the performance of the FDS proposed, the F1 value was determined for:

· The original features (set 1-52 in Table 1), 

· The original features plus their standard deviation data (set 1-104), and

· The original features plus their standard deviation and their linear trend (set 1-156).

· The reduced features given by GA (only for those faults with poor performance).

· The best set of features (BF) found from the previous steps.
Table 1 shows the values for the reduced sample sets as well as the original sample sets.
Table 1. F1 index for the original and validation sets for the trainings sets used in all the fault diagnosis improvement methodology

	
	F1 Index (%)

	
	Reduced sample sets
	Original sample sets

	Class
	1-52
	1-104
	1-156
	GA
	BF
	1-52
	1-104
	1-156
	GA
	BF

	1
	99.4
	98.9
	98.9
	-
	98.9
	97.5
	99.4
	99.4
	-
	99.4

	2
	96.5
	100.0
	100.0
	-
	100.0
	93.5
	98.8
	98.8
	-
	98.8

	3
	0
	0
	0
	11.3
	11.3
	0
	0
	0
	0
	0

	4
	86.1
	98.3
	98.3
	-
	98.3
	90.5
	98.5
	98.6
	-
	98.6

	5
	0
	84.2
	87.5
	-
	87.5
	0
	91.2
	92.2
	-
	92.2

	6
	100.0
	100.0
	100.0
	-
	100.0
	100.0
	100.0
	100.0
	-
	100.0

	7
	100.0
	99.4
	99.4
	-
	100.0
	100.0
	99.8
	99.8
	-
	100.0

	8
	46.6
	98.9
	97.7
	-
	98.9
	42.3
	95.3
	95.3
	-
	95.3

	9
	0
	0
	0
	8.7
	8.7
	0
	0.2
	1.2
	9.2
	9.2

	10
	0
	91.9
	91.9
	-
	88.5
	17.2
	86.9
	86.8
	-
	87.7

	11
	0
	99.4
	98.9
	-
	99.4
	0
	98.7
	98.7
	-
	98.8

	12
	0
	96.5
	96.5
	-
	96.5
	0
	95.4
	95.4
	-
	95.4

	13
	0
	86.5
	86.5
	-
	86.5
	0
	86.5
	86.7
	-
	86.8

	14
	0
	100.0
	100.0
	-
	100.0
	0
	99.3
	99.4
	-
	99.4

	15
	0
	0
	0
	9.7
	9.7
	0
	0
	0
	8.7
	8.7

	16
	4.4
	98.3
	98.3
	-
	98.3
	42.1
	99.4
	99.4
	-
	99.4

	17
	92.6
	95.8
	95.8
	-
	95.8
	95.3
	96.0
	96.0
	-
	96.0

	18
	75.2
	80.3
	80.3
	-
	80.3
	79.6
	81.8
	81.9
	-
	81.9

	19
	0
	95.2
	95.2
	-
	95.2
	0
	98.6
	98.6
	-
	98.6

	20
	75.7
	88.1
	88.1
	-
	88.1
	86
	92.5
	92.5
	-
	92.5

	Mean
	38.8
	80.6
	80.7
	
	82.1
	42.2
	80.9
	81.0
	
	81.9


Results in Table 1 clearly show a better fault diagnosis performance for when using the extended information (104 and 156 attributes), which indicates that the better the information representation in the FDS, the better detection of the faults. Table 1 also shows that the approach applied works fairly well for almost all the classes: the F1 values obtained are above 80% for 17 classes and over the 95% for 12 of them, which implies a good performance of the ML&SVM system in the real practice.
In addition, second to fourth columns in Table 1 present the same evaluation scheme for the reduced sample sets. Hence, very similar results are obtained for the original and reduced, and both verify the improved information representation obtained through the feature extension.
However, there are 3 faults that are poorly identified also during the feature extension step (3, 9 and 15). In order to increase the performance of these 3 classes, GA were applied for feature selection and further improvement of the information representation. The maximum F1 index obtained with the GA for classes 3, 9 and 15 were 11.3%, 9.2% and 9.7% respectively. The feature selection this way obtained was then used for the classes 3, 9 and 15 when applying again the FDS to the evaluation training set.

As stated previously, the study was addressed using a lineal kernel and a soft margin value for the SVM. At this point, some preliminary tests were carried out for investigating other kind of kernels (e.g. polynomials of different degrees, radial, etc.) and different margin values. A Top-Down for feature elimination was also examined so as to achieve a better performance in these classes. However, none of these trials led to any improvement of those results obtained with GA.
The low performance of these particular classes in the TE case has been experienced and addressed by other authors using other techniques such as Principal Component Analysis (PCA) and Correspondence Analysis (CA) for the fault diagnosis [3]. Hence, it could be conjectured that there is not enough good and reliable information for the construction of a learning model for these classes.

Another point to highlight is the generalization low performance. For class 3, the use of GA increases the F1 index to 11.3% on the reduced sample set. However, when applying this set of features to the original sample set, F1 value returns to 0%. For this case the system has over-learned the training set, which is known as “overfitting”.
Overfitting may occur when applying an optimization procedure (GA) for feature selection on a learning algorithm that includes an implicit optimization (SVM). For other schemes (ANN, kNN, the mono-label approach, etc.) feature selection with GA is reported [5,6] to perform appropriately. Thus, the occurrence of overfitting for this specific case under the ML&SVM framework reveals the good tolerance of ML&SVM the noise and redundant information.
Finally, SVM is applied to the training set with the best attributes (BF in Table 1) for each class chosen from the previous experiments applying ML&SVM and GA on classes 3, 9, and 15 to both the evaluation and optimization training sets for comparative purposes. For the original sample set, the diagnosis performance obtained with the original features and with the best features (BF) is plotted in Fig. 1.
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Fig. 1. Diagnosis performance improvement given through feature extension and selection.

4. Discussion
The results obtained in this work reveal high diagnosis efficiency for the use of SVM with the MultiLabel approach, and demonstrate that increasing the number of attributes leads to higher values for the F1 index (combination of the precision and recall), which implies a better fault diagnosis. The F1 values obtained for most of the classes are above 90%, which may be considered as a complete identification capability. However, there are three classes whose diagnosis has proved to be very difficult. The starting diagnosis performance is very poor and feature extension and feature selection (GA) only produce slight improvements. A first investigation on the use of different kernels and different margin values suggests that further improvement is limited. Similar experiences for these classes are reported by other authors [3]. These results point at a possible lack of relevant information for these faults to be statistically detectable. For instance, these faults may cause changes affecting the process variables (attributes) in a much damped way, and this could be a reason for which they can not be detected and diagnosed.
5. Conclusions

A new information treatment approach is introduced for the performance enhancement of a FDS. This approach consists of a feature extension step, using the standard deviation and linear trend of a given sample window followed by a feature selection step using GA. This change in the information representation results in a significant improvement of the FDS performance. The most significant progress is experienced when the standard deviation of the samples are included to the data sets, although further research is needed for assessing the comparative influence between the use of standard deviations or linear trends. Further investigation is required for building a good model for the three classes resisting diagnosis or otherwise demonstrating the information scarcity to achieve it and giving a more truthful reason of the low performance of these three classes.
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