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Abstract

In this work a methodology is presented for the rigorous optimization of nonlinear programming problems in which the objective function and (or) some constraints are represented by noisy implicit black box functions like optimization using modular process simulators. In these cases the derivatives are not available and some units operations introduce noise preventing their accurate calculation. The black box modules are substituted by metamodels based on a kriging interpolation that assumes that the errors are not independent but a function of the independent variables. Kriging metamodels include adjustable parameters that weight the importance of each variable getting a good model representation, and calculate errors that can be used to establish stopping criteria and provide a solid base to deal with ‘possible infeasibility’ due to inaccuracies in the metamodel representation of objective function and constraints. The algorithm includes refining and bound contraction stages in the domain of independent variables with or without kriging recalibration until an acceptable accuracy is obtained. The procedure is illustrated with an example.
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1. Introduction
There is a growing interest in designing and optimizing process and products using complex mathematical models which has produced a large number of specialized software. However, the arquitecture of most of these programs is modular in order to use tailored numerical methods developed or adapted to each particular problem. In most situations, the final user only can view a ‘black box’ model with limited access to the original code. 
Using optimization algorithms with these “black box models” is a challenging problem for at least two reasons. First, some of those models can take significant CPU computation and second, derivatives for gradient based algorithms usually cannot be accurately estimated because most of these black box models introduce noise (small sensitivity of some variables, termination criteria in the algorithms, etc).

In cases in which it is not practical to calculate the model at each iteration of an optimization algorithm, a good approach may be to use the original model as a source of ‘computational experiments’ that produce data points in the same way as if we had performed a physical experiment. This Response Surface Methodology (RSM) generate a simpler model that involves explicit functions. These new models are referred as surrogate, reduced order or metamodels [1].
RSM methods can be differentiated in two ways: if they are non-interpolating (i.e. least squared error of some predetermined functional form) or interpolating (pass through all points). Jones [2] showed that non interpolating surfaces, such as quadratic surfaces, can be unreliable because they do not capture the shape of the function. He showed that it is usually better to use surfaces that interpolate the data with linear combinations of ‘basis functions’ and showed some examples in which quadratic fitting could not even locate a local minimum. 

In interpolating methods it is possible to differentiate between fixed basis functions (i.e. linear, cubic or thin-plate splins) and basis functions with adjustable parameters (kriging). Furthermore, kriging has a statistical interpretation that allows the construction of estimations or the error in the interpolator, which can be crucial in the development of an accurate optimization algorithm. Due to these adjustable parameters kriging interpolation tends to produce the better results[2,3]
In this work, we develop an algorithm based on fitting response surfaces –using a kriging metamodel- for the optimization of constrained-noise black box models. Besides, an important characteristic is that we deal with constrained problems in which the metamodel can represent either the objective function or some constraints (or both simultaneously). A typical case is the optimization of process flowsheets using modular simulators in which some units are represented by a metamodel. In these systems it is possible to include external constraints and even the result of some calculations could be constraints to the model.

In the rest of the paper we first present an overview of kriging. Then an algorithm based on successive region refinement is introduced. Finally, an example illustrates the performance of the algorithm. 

2. Overview of Kriging Interpolation
When we evaluate a deterministic function in a set of given points we assume that the true function y(x) is approximated by a function f(x) with some error;
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Most metamodel techniques assume that the errors (
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) are independent and identically distributed (with a normal distribution) 
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. However, the errors in the predicted values are usually not independent, but they are a function of x. Therefore, the kriging fitting approach is comprised of two parts; a polynomial term and a departure from that polynomial:
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where Z is a stochastic Gaussian process, that represent the uncertainty about the mean of 
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 is a scale factor known as process variance that can be tuned to the data and 
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is the spatial correlation function (SCF). In kriging fitting, when a function is smooth, the degree of the polynomial f(x) does not affect significantly the resulting metamodel fit because Z(x) captures the most significant behaviour of the function[1]. This is an important advantage of kriging models. Usually a simple constant term (() is enough for a good prediction.. The choice of SCF determines how the model fits the data. There are many choices for the SCF, but the most common used in kriging models is the exponential function:
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To estimate the values of 
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, we maximize the logarithm of the likelihood of the observed data y. The optimal values of ( and (2 can be obtained analytically. 
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Parameters 
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 can be obtained by maximizing the concentrated log-likelihood function:
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The final predictor for the new point 
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 and its mean squared error in the kriging interpolation is given by equations 6 and 7. A detailed derivation can be found in Sasena [4]
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There are two important differences between kriging and other basis function methods that made that kriging usually outperforms those methods. First, other methods usually do not have parameters in their basis functions, or if there is any parameter this is rarely optimized. Second, most of the methods use a Euclidean norm which makes them sensitive to the units of measurements. Kriging, however, capture all those effects in the 
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’s parameters through a non-Euclidean norm.
3. An algorithm for process flow-sheets optimization using kriging metamodels

Although the algorithm described in next paragraphs is described for optimizing process flowsheets, it can be used for any black box model with or without noise. It guarantees a local minimum within a pre-specified tolerance.
1. Selection of the implicit models to be substituted by a kriging metamodel. Given a flowsheet to optimize, identify the unit operations that introduce noise or are very CPU time consuming in simulation. These will be the units to be substituted by a a kriging model. And estimate the noise introduced by dependent variables (especially if the noise introduced is important). Note that the accuracy of the final optimum point cannot be higher than the noise, but should be as close as possible. 

2. Sampling. Select the domain of the independent variables for the sampling, and select an initial confidence domain for those independent variables. Inside the domain sample in N distributed points.
3. Fit all the surfaces using kriging and validate the model. Once all the variables (surfaces) have been estimated by kriging, it is important validate the metamodel, i.e. using ‘cross validation’ that allows us to asses the accuracy of the model without extra sampling [2]. A kriging model can be considered correct if all the errors in cross validation are inside the interval [-3,+3] standard errors.
4. Perform the optimization of the flow-sheet substituting the selected units by their metamodel. If we are dealing with a constrained problem in which the constraints are calculated through a metamodel, the errors introduced in the model could produce infeasibilities. One way to deal with this problem consists of simply consider that the problem is ‘possibly feasible’ if the infeasibilities for each equation are inside the errors estimated by the kriging. In the refinement stage, as errors decrease, it is possible to confirm or not this assumption.
5. Refinement without updating kriging parameters. It is possible to improve the solution obtained in point 4 by adding this new point to the kriging model without re-optimize the parameters. With the new point added we re-optimize the model. This re-optimization is expected to be very fast because the initial point should be near the optimal solution. The procedure is repeated until two successive results are inside a pre-specified tolerance. 

6. . Region contraction or moving steps. Depending on where the solution of previous step is located we take different actions that redefine the domain of independent variables.

· If the optimal solution obtained in steps 4 (or 5) is an internal point to the original hypercube then select a contraction factor and reduce the size of hypercube. This new hypercube is centered on the optimal solution of previous step.
· If the optimal solution is in the limit of the hypercube then do not reduce the size of the hypercube, simply move it to do that this last point be the centre of the hypercube. The limits of the hypercube can go further than the bounds of the variables, although the sampling is always performed inside those bounds. Therefore a contraction step is only performed if the last point is in the boundary of the hypercube, but not if it is only in the limit of the domain of a variable.
7. Go back to point 4 adding to the new sample the optimal point obtained in step 6.

In each contraction step a new set of sample points is generated. Previous samples are discarded. Recall that we are looking for a local optimum, and points far away from this optimum do not provide valuable information and considerably 

3.1. Convergence of the algorithm
Once a kriging metamodel is generated, the simple substitution of this model by the actual one does not guarantee even a local optimum. Even more, a refinement procedure (as described in point 5 of previous section) that consist of solving the problem and successively update the kriging with the last obtained solution until there is no improvement in two consecutive iterations, does not guarantee a local optimum. Biegler et al.[5] proved that a necessary condition for an appropriate simplified model for optimization is that the gradients of the simplified and rigorous models be the same at the optimum. This, however, implies nothing about convergence to KKT points inherent in the simple model that may be absent in the rigorous model. Biegler et al. [5] also proved that a sufficient condition for an appropriate simplified model is that it matches the gradients of the rigorous model at all points. Therefore, in order to ensure a local optimum it is not enough to add a new point but to force the gradient of the surface to match the gradient of the true function. 

Therefore, the successive contraction of the search region (step 6 in the proposed algorithm) is introduced to guarantee a local minimum. As the domain of independent variables decreases the kriging metamodel adjust better the actual function, and its gradients. Besides, kriging calculate errors in the interpolated points providing an accurate termination criteria.
In noisy systems it is not possible to verify if the gradient of the metamodel matches the gradient of the true function. In this case the stopping criteria is based on the assumption that if in two successive major iterations (at least one contraction must be performed) the optimal solution is the same, we would expect that the gradients also match the ‘true gradients’. This is only a heuristic based on the observation that, as the domain reduces, the accuracy of the kriging increases, and also the accuracy of the derivative information extracted from the kriging.
4. Example

The example illustrates the optimization of a divided wall column. In order to avoid increasing the complexities of the model, we minimize the heat flow in the reboiler. A divided wall column can be simulated using the thermodynamically equivalent configuration Petlyuk arrangement[6] (see Figure1) 
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Figure 1. . Scheme of the Petlyuk arrangement equivalent to a divided wall column

From a simulation point of view, the two thermal couples introduce two recycles. .In this case, recycles introduces two complications: 1. Good initial values are needed to converge the flowsheet, and 2. The time to converge the flowsheet considerably increases. It would be possible to decompose the system in individual columns and develop a kriging for each column, but the dimensionality of the kriging model would be larger, because we would have to deal with the recycles explicitly. Therefore, it is better to keep the divided wall column as an entity that can be efficiently substituted by a kriging metamodel. 

The objective is separate a mixture of 200 kmol/h of Benzene, Toluene and p-Xylene, with molar composition (0.3, 0.4, 0.3) and obtain the pure components with at least a recovery of 95% in each component using a divided wall column. Relevant data are included in the Figure 1.
If the pressure is fixed, there are 5 degrees of freedom. A mass balance allows specify the flow of distillate (D) (benzene) and intermediate product (P) (toluene) to a narrow interval. Therefore, although the kriging metamodel depends on 5 variables two of them can be almost fixed a priori, which increase the robustness of the model. The simulator (Hysys.Plant) forced us to specify the liquid (L) and vapor (V) streams that are withdraw from second column and returned to the first one. As remaining specification we chose the reflux ratio (RR). Initial values for these last three degrees of freedom, a reasonable interval of values as well as the number of trays of each column the feed and products tray positions, can be estimated using a shortcut method [6]
Table 1 shows a summary of the iterations. In this example, even thought the number o independent variables is five, the bounds of at least three of them are very close improving the performance of the algorithm. Therefore it is not strange that in the first iteration, the results are very close the optimal solution. The second iteration assures that the kriging errors are inside the tolerance.

Table 1. Summary of the main steps in algorithm in example

	Initial interval:
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(D, P, L, V in kmol/h)
Kriging metamodels: xB = Molar fraction of Benzene in distillate; xT = Molar fraction of Toluene in intermediate product stream; xX = Molar fraction of Xylene in Bottoms stream; Q = Heat flow in the reboiler (kW)

Number of sampled points = 91.



	Iteration 1. Optimal values after refining

	D
	61.6
	P
	79.4
	Q (kW)
	2295

	L
	42.6
	V
	134.7
	CPU time (s)
	5.82

	RR
	3.2
	
	
	
	

	Iteration 2. Optimal values after refining

	D
	60.8
	P
	80.2
	Q (kW)
	2295

	L
	46.3
	V
	137.9
	CPU time (s)
	21.1

	RR
	3.26
	
	
	
	

	Total CPU time (s) = 526.9  (53.7% sampling; 40.3 kriging generation)
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