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Abstract

This paper addresses the crude-oil short-term scheduling problem, which is the first stage of the crude-oil refining process. The problem involves crude-oil unloading from marine vessels to storage tanks, transfers and mixings in charging tanks, and a charging schedule for each crude-oil mixture to the crude distillation units. Previous work on this problem includes discrete-time and continuous-time formulations. In this paper, we present a new continuous-time model that is based on the idea of postulating a potential number of tasks, which simplifies both the formulation and the application to crude-oil scheduling problems. The proposed formulation results in a non-convex mixed-integer nonlinear programming model (MINLP) which is solved using a two stage decomposition procedure. The algorithm converges quickly within a small (<5%) optimality gap as is illustrated with the four case-studies.
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1. Introduction

Many chemical engineering optimization problems involve continuous and discrete variables to handle economic and combinatorial optimization decisions. Mixed-integer linear programming (MILP) is an efficient and widely used tool to solve these problems for cases where the objective function and constraints can be expressed in linear form. In particular, scheduling problems in chemical engineering represent a very large field of study for applying MILP techniques [1-2].

In this paper, we consider the short-term scheduling for the crude-oil scheduling problem that arises in the first stage of refinery operations. This problem, which has been studied since the 90’s, can lead to multimillion dollar benefits due to its impact in the oil refining process [3]. It has been solved using a discrete-time scheduling formulation [4] and also a continuous-time event-based formulation [5]. These two time representations have been used to solve many chemical processes [6] and oil refinery related scheduling problems [7-8]. In both formulations, the number of time-slots or events, which are postulated a priori, play a crucial role to determine the quality of solution and the computational expenses. The proposed continuous-time approach attempts to simplify the original hypothesis in order to better understand the behavior of the algorithm.
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Figure 1 - Crude-oil operations system: case-study

2. Problem statement

The crude-oil operations system is composed of crude marine vessels, storage tanks, charging tanks and crude distillation units (CDUs). Fig. 1 depicts the case-study refinery configuration, which is the first example presented in [4]. Crude vessels unload crude-oil into storage tanks during a time window depending on their arrival time to the refinery. These crude-oils are then mixed into charging tanks before being distilled by CDUs which separate the charged oil into fractions such as gas oil, gasoline, kerosene, heating oil and residues.

The following information is given: (a) a time horizon, (b) arrival time of marine vessels, (c) capacity limits of tanks, (d) flowrate limitations, (e) initial composition of vessels and tanks, (f) distillation specifications and demands for each mixed oil. The objective is to determine the time and volume decisions for each crude-oil transfer operation in order to maximize the gross margins of distilled mixed oil. These gross margins depend on crude-oil prices and production values.

The operating constraints are defined as follows: (i) only one docking station is available for all vessels, (ii) simultaneous inlet and outlet operations on tanks are forbidden, (iii) each charging tank can only charge one CDU, (iv) each CDU can only be charged by one charging tank, (v) CDUs must be operated continuously throughout the scheduling horizon.
3. Proposed approach

A classical continuous-time formulation for scheduling problems consists of a linear generalized disjunctive program (GDP) where disjunctions arise to enforce non-overlapping constraints. For instance, the non-overlapping constraint between two operations v and w (e.g. unloading transfers from vessels to storage tanks) may be expressed with the disjunction
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where TS and TE are starting and ending time of operations v and w. This disjunction states that either operation v is completed before w, or vice versa.

In the proposed multi-operations time-slots model, the user postulates a number of time-slots to be used, corresponding to the number of operations to be performed throughout the scheduling horizon [0, H]. Then each time-slot is assigned to exactly one specific operation (e.g. unloading, tank-to-tank transfer, or distillation).
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Figure 2 - Optimal schedule Gantt chart for the case-study

Time-slots are given a priority order for non-overlapping constraints. Let i, j be two time-slots such that i < j (i has a higher priority than j). If these time-slots are assigned to non-overlapping operations, then time-slot i will be executed before j: TEi ≤ TSj. The special feature of this pre-ordering of time-slots is that discrete decisions are involved only in operation assignments and not in the disjunctions.

In the case of the crude-oil scheduling problem, an operation is a transfer between two units. Hence, each time-slot is assigned to one stream from the case-study (Fig. 1).

This crude-oil scheduling problem is composed of 2 vessels, 2 storage tanks, 2 blending tanks and 1 CDU, all considered as tanks with capacity limitations. 8 different operations are possible: unloadings 1, 2; transfers 3, 4, 5, 6; and distillations 7, 8.

As stated before, the following logistics constraints apply:

(i)  Only one docking station is available (e.g. operations 1, 2 must not overlap).

(ii) No simultaneous inlet and outlet operations on a tank are allowed (e.g. operations 1, 3 must not overlap).

(iv) The CDU can be charged by only one tank (e.g. operations 7, 8 must not overlap).

(v)  The CDU must operate continuously (e.g. operations 7 or 8 must always be active).

In order to track the composition of the tanks, several crude-oil types are defined. Initial content in each tank is defined by its composition in terms of these crude-oil types. The exact properties of the mixtures are then derived from theirs composition.
The Gantt chart of an optimal schedule is shown in Fig. 2. Each row corresponds to a possible oil transfer in the refinery. Each time-slot is represented by a horizontal bar in which the slot number is written. Note that some rows contain several time-slots as the corresponding operation is performed more than once (e.g. transfer 6). 

3.1. Notation

Time-slots are denoted by i and j (1 ≤ i, j ≤ n) where n is the number of time-slots.

Operations are denoted by v (1 ≤ v ≤ Nv) where Nv is the number of operations.

Tanks are denoted by t (1 ≤ t ≤ Nt) where Nt is the number of tanks.

Crude-oil types are denoted by c (1 ≤ c ≤ Nc) where Nc is the number of crude-oil types.

3.2. Variables

Each time-slot i is represented by a starting time TSi and an ending time TEi.

Binary variables Ziv are introduced in order to represent the selection of operation v for time-slot i. Exactly one operation has to be selected for each time-slot i, so the following constraint is imposed:
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Binary variables NOij are introduced to enforce the non-overlapping conditions between time-slots i and j where i < j. If time-slots i and j are assigned to non-overlapping operations, then NOij = 1.

To track the tank occupation during the scheduling horizon, level variables Lit are introduced. Lit represents the volume of crude-oil in tank t that is available before time-slot i. Lit is calculated by adding the contribution of time-slot i-1 to L(i-1)t.

Continuous variables Viv represent the volume of oil transferred during time-slot i if operation v is selected, 0 otherwise.

3.3. Non-overlapping constraints

Several logistics constraints may imply non-overlapping conditions between time-slots. We need to have NOij = 1 whenever time-slots i and j (i < j) are assigned to non-overlapping operations. Two examples are detailed below.

(i) Unloading operations 1 and 2 must not overlap:
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(ii) Outlet and inlet operations on a tank t must not overlap:
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where IN(t) and OUT(t) are the sets of inlet and outlet operations on tank t. Now, if NOij = 1, then time-slots i and j must not overlap, so TEi ≤ TSj. This can be written as:
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where M is a sufficiently large number. Notice that NOij is not constrained to be 0 whenever time-slots i and j are allowed to overlap. In this case, this constraint accepts the relation TEi > TSj.

3.4. Inventory level constraint

For each time-slot i, only one of the variables Viv is non-zero. This can be expressed using the upper bound constraint 0 ≤ Viv ≤ M· Ziv. We can then write the inventory level constraints for each time-slot i < n:
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(6)
Inventory capacity limitations are expressed by setting the bounds of variable Lit to the minimum and maximum capacity of tank t.

3.5. Composition constraint

For each crude-oil c, variables Vivc and Litc are defined as well as corresponding inventory level constraints. The composition constraint states that for each time-slot i and operation v, the composition of the stream is the same as the composition of the tank of origin. This can be expressed by the following nonlinear (bilinear) constraint
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(8)
where t is the origin tank. This leads to an MINLP model. It has been shown that when both mixing and splitting occur in a chemical process, the problem cannot be linearized and gives rise to nonconvexities [9]. Mixing occurs before a distillation when the charging tank has been filled up by two or more transfers. Splitting occurs when a distillation does not completely empty the charging tank.
Instead of solving directly this nonlinear model, the following linear relaxation (MILP), corresponding to mass balances in streams and tanks, is used:
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It can be noted that this linearization is a correct representation of the problem studied if distillations are constrained to totally empty the charging tank, as then there is no splitting. This explains why the MILP solution is very close to the actual MINLP solution for the problems presented in section 4.
3.6. Decomposition scheme

Due to the linear approximation, the solution returned by the MILP solver may violate the nonlinear composition constraints. To circumvent this problem, a nonlinear programming (NLP) model is designed to adjust the MILP solution in a two step procedure. This NLP model contains the same constraints as in the MILP solution plus the nonlinear constraints (8). The binary variables Ziv are fixed to their values in the MILP solution. The resulting solution may not be optimal for the overall MINLP model but the optimality gap can be estimated from the lower bound given by the MILP solution and the upper bound given by the NLP solution.
4. Computational results

The model has been tested on several case-studies from [4] whose sizes are given in Table 1. Note that problem 4 is representative of a real industrial application. The computations were run using GAMS 22.5 with Xpress-MP 17.10 (MILP) and CONOPT 3 (NLP). For different problems and different numbers of postulated time-slots, Table 2 presents the root LP relaxation, MILP solution with CPU time and number of nodes explored, NLP solution, and the optimality gap (between MILP and NLP solutions).
With less than 8 time-slots, problem 1 is proved to be infeasible. A minimum of 9 time-slots is necessary in order to find a feasible schedule that meets the demand for each mixed-oil and the arrival time of vessels. The MILP solution violates some of the nonlinear composition constraints, so the NLP solver returns a different solution. Adding another time-slot allows getting the optimal solution directly from the MILP relaxation. Solving with a larger number of time-slots returns the exact same solution as unused time-slots have a transferred volume of 0. The larger problems have been solved in less than 2 minutes within a small optimality gap (<5%). All problems have been solved with the maximum number of time-slots: 13 for problem 1, 21 for problem 2 and 3, and 26 for problem 4.

Table 1. Complexity of the problems taken from [4]
	Problem
	Horizon (days)
	Vessels
	Storage tanks
	Charging tanks
	CDUs
	Crude types
	Operations

	1
	8
	2
	2
	2
	1
	4
	8

	2
	10
	3
	3
	3
	2
	6
	14

	3
	12
	3
	3
	3
	2
	7
	14

	4
	15
	3
	6
	4
	3
	8
	19


Table 2. Computational results (CPU: Intel Core 2 Duo 2.16GHz)
	Problem
	Nb slots
	LP
	MILP
	CPU
	Nb  nodes
	NLP
	Gap

	1
	8
	82.5
	Infeas
	1s
	141
	
	

	
	9
	82.5
	120.28
	2s
	183
	121.25
	0.8%

	
	10
	82.5
	120.25
	2s
	145
	120.25
	0%

	
	11
	82.5
	120.25
	3s
	121
	120.25
	0%

	
	12
	82.5
	120.25
	3s
	71
	120.25
	0%

	
	13
	82.5
	120.25
	1s
	17
	120.25
	0%

	2
	21
	172.0
	198.83
	24s
	27
	198.83
	0%

	3
	21
	37.5
	59.60
	53s
	49
	62.50
	4.9%

	4
	26
	96.6
	107.47
	105s
	27
	107.47
	0%


Note that the number of nodes explored remains small with a large number of time-slots because of symmetry-breaking constraints, expressed with a refinery-specific regular language [10], which reduce the search space (this is not developed in this paper).
Also, the proposed method is substantially faster on problem 1 compared through a direct MINLP solution with solvers such as DICOPT, SBB, AlphaECP and BARON.
5. Conclusions

In this work, we have proposed a novel continuous-time scheduling approach to solve the crude-oil scheduling problem. This formulation relies on assignment of specific operations to an ordered set of time-slots whose cardinality is postulated by the user. This approach is appropriate for semi-batch processes as crude-oil transfer operations. The problem leads to a non-convex MINLP model, which in this particular case, can be efficiently solved within a small optimality gap using a two step MILP-NLP decomposition procedure. The numerical results on the case-studies in [4] have shown that the proposed approach is promising.
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