
18th European Symposium on Computer Aided Process Engineering – ESCAPE 18
Bertrand Braunschweig and Xavier Joulia (Editors)
© 2008 Elsevier B.V./Ltd. All rights reserved.

Using Grid Computing to Solve Hard Planning and
Scheduling Problems
Michael C. Ferrisa, Christos T. Maraveliasb, Arul Sundaramoorthyb

aDepartment of Computer Sciences, University of Wisconsin - Madison, WI 53706,
USA
bDepartment of Chemical and Biological Engineering, University of Wisconsin -
Madison, WI 53506, USA

Abstract
Production planning and scheduling problems routinely arise in process industries. In
spite of extensive research work to develop efficient scheduling methods, existing
approaches are inefficient in solving industrial-scale problems in reasonable time. In
this paper we develop a dynamic decomposition scheme that exploits the structure of
the problem and facilitates grid computing. We consider the problem of simultaneous
batching and scheduling of multi-stage batch processes. The proposed method can be
used to solve hard problems on a grid computer to optimality in reasonable time.

Keywords: mixed-integer programming; grid computing; decomposition algorithm.

1. Introduction
In a process facility, scheduling decisions are made on a daily or weekly basis. Re-
scheduling is common because of new order arrivals, delays in raw material deliveries,
processing delays and other disruptions. Thus, an efficient solution method is required
to solve the real-life problems in reasonable time frame. In this paper we consider
multi-product multi-stage batch processes, where a set of orders has to be processed
sequentially in multiple stages and each stage consists of parallel units (Méndez et al.
2006). In most existing methods each order is divided into a set of batches (batching
problem) and then these batches are used as input to a scheduling method. This
sequential approach, however, often leads to suboptimal decisions due to the trade-offs
between batching and scheduling decisions.
Recently, Prasad and Maravelias (2007) proposed a mixed-integer programming (MIP)
model to address the simultaneous batching and scheduling of multi-stage batch
processes. The proposed model can potentially lead to better solutions, but it is
computationally expensive. The goal of this paper is the development of a solution
method that enables us to solve real-world batching and scheduling problems
simultaneously in reasonable time. The proposed method is based on a dynamic
decomposition algorithm that is well suited to grid computing using the Condor
resource management system.

2. Batching and Scheduling of Multi-stage Batch Processes

2.1. Problem Statement
Given are a set of orders (i∈I) with demand qi and release/due time ri,/di; a set of
processing units (j∈J) with minimum/maximum batch sizes bj

min/bj
max, processing time

τij and processing cost cij; a set of stages (k∈K) with parallel processing units (j∈Jk; J =
J1∪J2 …∪J|K|) at each stage k; a set of forbidden units FJi for order i and a set of

2 Ferris et al.

forbidden production paths (j,j′)∈FP for all orders. The goal is to determine the number
and size of batches for each order (batching), the assignment of batches to processing
units at each stage, and the sequencing of assigned batches in each processing unit
(scheduling), so as to minimize the makespan. We assume that all orders go through all
stages, unlimited storage is available for intermediates between stages, and changeover
times are negligible.
2.2. MIP Formulation
To account for the batching decisions, we have to calculate the minimum li

min = ⎡qi/ ˆmax

ib ⎤
and maximum li

max = ⎡qi/
max

ib% ⎤ possible number of batches that order i∈I can be divided
to, where ˆmax

ib = mink∈K (maxj∈JAik bj
max) is the maximum feasible batch size for order i,

max

ib% = mink∈K (minj∈JAik bj
max) is the largest batch size for order i that can be processed on

all allowed units, and JAik = Jk\FJi is the set of units that can be used for the processing
of order i in stage k. The set of potential batches for order i∈I is Li = {1, 2, …li

max}.
More details can be found in Prasad and Maravelias (2007).
2.2.1. Batch Selection and Assignment
We introduce binary variables Zil, Xilj and continuous variable Bil to denote the selection,
assignment, and size respectively of batch (i,l). Eq. (1) enforces that a batch is assigned
to a processing unit at each stage if it is selected. If assigned, then the size of batch (i,l)
has to be within the processing limits, as in eq. (2). Eq. (3) ensures that the demand for
each order is met.

, ,ilj il
j ik

iX Z i l k
∈

= ∀ ∈∑
JA

L (1)

, ,min max

j ilj il j ilj

j jik ik

ib X B b X i l k
∈ ∈

≤ ≤ ∀ ∈∑ ∑
JA JA

L (2)

i

il i
l

B q i
∈

≥ ∀∑
L

 (3)

2.2.2. Batch Sequencing and Timing
We introduce binary Yili’l’k that is equal to 1 if batch (i,l) precedes (i’,l’) in stage k. The
sequencing and timing of batches in the same stage is accomplished via eqs. (4) and (5):

()' ' ' ' ' '1 , , ' ' : ', ,ilj i l j ili l k i l ilk ik i kX X Y Y i l i l i i k j ′+ − ≤ + ∀ ∈ ≤ ∈ ∩IL JA JA (4)

() ()' ' ' ' ' '1 , , ' ' ,i l k ilk i'j i l j ili l k
j i k

T T τ X M Y i l i l k
∈ ′

≥ + − − ∀ ∈∑
JA

IL (5)

where Tilk denotes the finish time of batch (i,l) in stage k.
The timing of a batch between two consecutive stages is enforced by eq. (6), while
release and due time constraints are enforced by eq. (7), where

() () ()(){ }, ' , , ' ' ' ':i ii i l l i i i i l l′= ∈ ∈ ∈ ≠ ∨ = ∧ ≠IL I L L is the set of all combinations of
batches that can be sequenced on a unit:

, , 1 , ,i l k ilk ij ilj
j ik

iT T τ X i l k
−

∈

≥ + ∀ ∈∑
JA

L (6)

' '

, ,i il ij ilj ilk i il ij ilj
k k j k k jik ik

irZ τ X T d Z τ X i l k
≤ ∈ > ∈′ ′

+ ≤ ≤ − ∀ ∈∑ ∑ ∑ ∑
JA JA

L (7)

Using Grid Computing to Solve Hard Planning and Scheduling Problems 3

2.2.3. Additional Constraints
We introduce eq. (8) to exclude infeasible assignments. Eq. (9) takes care of forbidden
paths, while eqs. (10) and (11) are used to avoid symmetric solutions:

{ } { }'
' '

' '

min min() min min() ,ij ijl ij' i ij
i j i jj k j ki l k k k kj i

kX MS τ r τ k jτ
∈ ∈ ∈ ∈′ ′∈ ∈ > <

≤ − − + ∀ ∈∑∑ ∑ ∑
IA J IA J

IA L

J (8)

' , , (, ')ilj ilj il iX X Z i l j j+ ≤ ∀ ∈ ∈ ∈I L FP (9)

1 , ,il i l iZ Z i l
+
≤ ∀ ∈L (10)

1 , ,il i l iB B i I l
+
≤ ∀ ∈ ∈L (11)

Integrality and non-negativity constraints are expressed by eq. (12).

{ }' ', , 0,1 , 0il ilj ili l k il ilkZ X Y B T∈ ≥ (12)

where IAj=I\FIj is the set of orders that can be assigned to unit j.
We also fix all variables for l∉Li to zero. Finally, we fix binaries Zil to 1 for l ≤ min

il .

2.2.4. Objective
The objective is to minimize the makespan MS, which is greater than the finish time of
all batches at the last stage.
min MS (13)

| | ,il iMS T i l≥ ∀ ∈ ∈K I L (14)

The MIP model P consists of eqs. (1) – (14). Note that the model has an inherent
hierarchy of decisions: a selected batch is assigned to a single unit in each stage via eq.
(1), and a sequencing binary is activated if two batches are assigned to the same unit via
eq. (4).

3. Grid Computing
Grid Computing utilizes a pool of computers as a common resource in an opportunistic
manner. It does not require dedicated computers, but it simply uses distributively owned
computational resources and facilitates better utilization of CPU power. We use the
Condor resource manager (Epema et al., 1996) that manages a large collection of
Linux-based machines at University of Wisconsin Madison. However, Condor can be
used on other machine architectures and operating systems (Windows, Solaris) as well.
We implement the proposed solution approach for this problem using GAMS/Grid
options (Bussieck et al., 2007). We adopt the master-worker paradigm as a model of
computation, where model P is decomposed into a number of subproblems (tasks). The
master processor generates and spawns all the subproblems, and also collects the results
of each subproblem (see Figure 1). A separate task directory is created for each
subproblem by the master processor. Condor submits the subproblems to worker
processors for execution. Condor does not require a shared file system between the
master and the workers. Instead, it simply ships the subproblem directory to a
“sandbox” on the worker machine, which in turn executes the subproblem within the
sandbox. Once the subproblem is completed, a file “finished” is created in the
subproblem directory of the master processor along with the requisite solution files. The

4 Ferris et al.

appearance of the “finished” file and the solution loading process are carried out in
GAMS using the “handlecollect” primitive.
Communication between the master and worker processors is implemented via the
Condor_chirp utility. When a new incumbent is found, the utility updates the master
processor by creating a “trigger file” in the task directory. Further, it uses the current
best incumbent from the master processor to prune/continue the subproblem in other
worker processors. Examples of the GAMS syntax used for grid submission, and the
methods that deal with different grid engines are discussed in Bussieck et al. (2007).

Master

Condor

Separate directory
for each subproblem

“finished” file upon
completion of subproblem

…

Worker 1

Sandbox

Worker 2

Sandbox

“trigger” file is created if
new incumbent is found

condor_chirp utility
Fetch: copies trigger file
Remove: removes trigger file after copying
Put: places new incumbent in master directory

Worker N

Sandbox
…

“handlecollect” repeatedly
checks for “finished” files

Figure 1. Architecture for Optimization on the GAMS/Grid using Master-worker Paradigm.

4. Dynamic Decomposition Algorithm

4.1. Strong Branching
Our goal is to dynamically decompose original model P into smaller subproblems that
can be solved using Grid computing. Unlike static decomposition, where subproblems
are generated a priori, dynamic decomposition generates subproblems over the time as
and when required. We first used strong branching with the goal of generating
subproblems that are easier than problem P. Based on the size of the grid engine,
problem P is partitioned using strong branching into a number of subproblems (open
nodes), which are submitted to worker processors. Subproblems that remain unsolved
after a resource limit, are re-partitioned using strong branching. The process is repeated
dynamically as necessary until, in principle, all subproblems are easy to solve (Figure
2a). Nevertheless, our preliminary results indicated that strong branching does not
always lead to easier subproblems. Specifically, some of the open nodes correspond to
problems that are almost as hard as the original problem P. This motivated us to
develop a domain-specific decomposition method.
4.2. Proposed Decomposition
Our solution method exploits the inherent structure of the problem to sequentially
decompose original model P into subproblems of different levels of complexity (Figure
2b). Subproblems are generated by fixing batch selection Zil and batch-unit assignment
Xilj binary variables.
4.2.1. Fixing Selection of Batches
The 1st-level subproblems are generated by fixing the number of batches for each order
i∈I. If li denotes the number of batches that are fixed for order i∈I, then each
subproblem is generated by setting li = li

min = li
max, ∀i∈I in eqs. (1) – (14) of model P.

Note that we consider all possible combinations of li between li
min and li

max for a given
set of orders.

Using Grid Computing to Solve Hard Planning and Scheduling Problems 5

4.2.2. Fixing Batch-unit Assignments
If any of these 1st-level subproblems remains unsolved within a resource limit (typically
1 hr), then it is decomposed into a set of 2nd-level subproblems by fixing batch-unit
assignment decisions at one stage kF (typically the bottleneck stage). If any of these 2nd-
level subproblems remains unsolved, then it is further decomposed into 3rd-level
subproblems by fixing batch-unit assignment decisions at another stage. This process
can be repeated multiple times, or it can be followed by the dynamic decomposition
based on strong branching (section 4.1).

1st-level
subproblems
by fixing Zil

P

Promising

2nd-level
subproblems
by fixing Xilj
in one stage

3rd-level
subproblems
by fixing Xilj
in another stage

b) Domain-specific decomposition

Non-promising

Promising Non-promising

P
Master

Worker 1

Worker 2

a) Strong-branching-based decomposition

Worker 3 Worker 4

Figure 2. Dynamic decomposition based on a) strong branching and b) problem structure (grey
nodes denote hard subproblems that need to be decomposed further).

The number of different batch-unit assignments is very large even for medium size
problems. Some of these assignments lead to promising subproblems(i.e. subproblems
that are likely to yield a good solution), while others lead to non-promising ones.
Although non-promising subproblems are easy to prune, the resources required for their
generation, submission and solution are substantial. To avoid generating a large
number of such tasks, we identify a subset of assignments that are likely to lead to good
solutions and solve each one of them separately, while subsets of non-promising
assignments are lumped into larger subproblems that are easier to prune.
To this end, we use the idea of balanced batch-unit assignments: a min makespan
schedule is likely to have the load in the bottleneck stage distributed almost equally
among units. Thus, subproblems that correspond to balanced assignments are generated
by fixing all variables Xilj at stage kF:

1, , (,)Filj jk
X j i l= ∀ ∈ ∈J D (15)

where set Dj is the set of batches that are assigned to unit j in the current subproblem.
Non-promising subproblems are generated by adding either of the following constraints
for each unit in stage kF:

,

1ilj
i l

MINX NJ≤ −∑ (16)

,

1ilj
i l

MAXX NJ≥ +∑ (17)

where NJMIN (NJMAX) is an estimate of the number of batches that if assigned to a single
unit makes it highly (lightly) loaded. In this paper we use NJMIN = ⎣0.9M/|J(kF)|⎦ and

6 Ferris et al.

NJMAX = ⎡1.1M/|J(kF)|⎤, where M is the total number of batches in the current
subproblem and |J(kF)| is the number of units in stage kF.
Note that promising subproblems have all batch-unit variables fixed in stage kF from
eqs. (1) and (15) but are hard to solve due to their poor lower bounds. On the other
hand, non-promising subproblems are less tightly constrained by eq. (16) or (17) but are
pruned easily because they encompass many but unbalanced assignments, thus have
high lower bounds.
Finally, we developed a pre-processing procedure in order to identify infeasible batch-
unit assignments. First, we remove subproblems with the forbidden batch-unit
assignments. Then, we check the capacities of units to ensure that the demands of orders
are met. Finally, when variables Xilj are fixed in more than one stage, we remove the
subproblems with forbidden paths. The proposed procedure improves the performance
of our algorithm by screening infeasible subproblems a priori, thus reducing the time
required to generate, spawn and solve a number of subproblems.

5. Results
We present results for a process that consists of three stages with two units per stage
and 10 orders. We consider two instances of this problem: instance 1 results in a
problem with 10-11 batches, while instance 2 with 12-15 batches. The problem data are
available from the authors. We analyzed the effect of both the automatic decomposition
scheme based solely on strong branching (scheme 1) and the domain-specific
decomposition (scheme 2).
Instance 1 was solved to optimality in almost 2 hr of wall clock time and 2,905,742
nodes using scheme 1. In scheme 2, we carried out the 1st-level domain-specific
decomposition and then followed with decomposition based on strong branching.
Instance 1 was solved in only 7.5 min of wall clock time and 9,601 nodes. For instance
2, scheme 1 failed to solve the problem due to the generation of innumerable
subproblems. On the other hand, scheme 2 solved the problem to optimality in 9 hr of
wall clock time exploring 222,065,793 nodes. In this case, we carried out the 1st, 2nd and
3rd level domain-specific decompositions followed by strong branching.
In this paper we proposed a solution method to solve the problem of simultaneous
batching and scheduling in multi-stage multi-product processes. Our method uses
GAMS/Grid options and grid computation facilitated by the Condor management
system. It couples problem-specific knowledge with strong branching to dynamically
decompose hard problems into a set of subproblems. Our computational studies showed
that the proposed method can be used to solve hard problems to optimality with
reasonable time. Finally, we note that the proposed methodology can be applied to a
wide range of production planning and scheduling problems.

References
Bussieck, M., Ferris, M. C., Meeraus, A., 2007. Grid Enabled Optimization with GAMS.

Technical Report, Computer Sciences Department, University of Wisconsin.
Epema, D. H. J., Linvy, M., van Dantzig, R., Evers, X., Pruyne, J. 1996. A Worldwide Flock of

Condors: Load Sharing among Workstation Clusters. Future Generation Computer Systems
12, 53-65.

Méndez, C.A., Cerda, J., Grossmann, I.E., Harjunkoski, I., Fahl, M., 2006. State-of-the-art
Review of Optimization Methods for Short-term Scheduling of Batch Processes. Comput.
Chem. Eng. 30, 913-946.

Prasad, P., Maravelias, C.T., 2008. Batch Selection, Assignment and Sequencing Multi-stage
Multi-product Processes. Comput. Chem. Eng., (doi:10.1016/j.compchemeng.2007.06.012).

