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Abstract 
Production planning and scheduling problems routinely arise in process industries. In 
spite of extensive research work to develop efficient scheduling methods, existing 
approaches are inefficient in solving industrial-scale problems in reasonable time. In 
this paper we develop a dynamic decomposition scheme that exploits the structure of 
the problem and facilitates grid computing. We consider the problem of simultaneous 
batching and scheduling of multi-stage batch processes. The proposed method can be 
used to solve hard problems on a grid computer to optimality in reasonable time. 
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1. Introduction 
In a process facility, scheduling decisions are made on a daily or weekly basis. Re-
scheduling is common because of new order arrivals, delays in raw material deliveries, 
processing delays and other disruptions. Thus, an efficient solution method is required 
to solve the real-life problems in reasonable time frame.  In this paper we consider 
multi-product multi-stage batch processes, where a set of orders has to be processed 
sequentially in multiple stages and each stage consists of parallel units (Méndez et al. 
2006). In most existing methods each order is divided into a set of batches (batching 
problem) and then these batches are used as input to a scheduling method.  This 
sequential approach, however, often leads to suboptimal decisions due to the trade-offs 
between batching and scheduling decisions.   
Recently, Prasad and Maravelias (2007) proposed a mixed-integer programming (MIP) 
model to address the simultaneous batching and scheduling of multi-stage batch 
processes. The proposed model can potentially lead to better solutions, but it is 
computationally expensive. The goal of this paper is the development of a solution 
method that enables us to solve real-world batching and scheduling problems 
simultaneously in reasonable time.  The proposed method is based on a dynamic 
decomposition algorithm that is well suited to grid computing using the Condor 
resource management system.   

2. Batching and Scheduling of Multi-stage Batch Processes 

2.1. Problem Statement 
Given are a set of orders (i∈I) with demand qi and release/due time ri,/di; a set of 
processing units (j∈J) with minimum/maximum batch sizes bj

min/bj
max,  processing time 

τij and processing cost cij; a set of stages (k∈K) with parallel processing units (j∈Jk; J = 
J1∪J2 …∪J|K|) at each stage k; a set of forbidden units FJi for order i and a set of 
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forbidden production paths (j,j′)∈FP for all orders. The goal is to determine the number 
and size of batches for each order (batching), the assignment of batches to processing 
units at each stage, and the sequencing of assigned batches in each processing unit 
(scheduling), so as to minimize the makespan. We assume that all orders go through all 
stages, unlimited storage is available for intermediates between stages, and changeover 
times are negligible. 
2.2. MIP Formulation 
To account for the batching decisions, we have to calculate the minimum li

min = ⎡qi/ ˆmax

ib ⎤ 
and maximum li

max = ⎡qi/
max

ib% ⎤ possible number of batches that order i∈I can be divided 
to, where ˆmax

ib = mink∈K (maxj∈JAik bj
max) is the maximum feasible batch size for order i, 

max

ib% = mink∈K (minj∈JAik bj
max) is the largest batch size for order i that can be processed on 

all allowed units, and JAik = Jk\FJi is the set of units that can be used for the processing 
of order i in stage k. The set of potential batches for order i∈I is Li = {1, 2, …li

max}. 
More details can be found in Prasad and Maravelias (2007). 
2.2.1. Batch Selection and Assignment 
We introduce binary variables Zil, Xilj and continuous variable Bil to denote the selection, 
assignment, and size respectively of batch (i,l). Eq. (1) enforces that a batch is assigned 
to a processing unit at each stage if it is selected. If assigned, then the size of batch (i,l) 
has to be within the processing limits, as in eq. (2). Eq. (3) ensures that the demand for 
each order is met.  
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2.2.2. Batch Sequencing and Timing 
We introduce binary Yili’l’k that is equal to 1 if batch (i,l) precedes (i’,l’) in stage k. The 
sequencing and timing of batches in the same stage is accomplished via eqs. (4) and (5):  

( )' ' ' ' ' '1 , , ' ' : ', ,ilj i l j ili l k i l ilk ik i kX X Y Y i l i l i i k j ′+ − ≤ + ∀ ∈ ≤ ∈ ∩IL JA JA  (4) 

( ) ( )' ' ' ' ' '1 , , ' ' ,i l k ilk i'j i l j ili l k
j i k

T T τ X M Y i l i l k
∈ ′

≥ + − − ∀ ∈∑
JA

IL  (5) 

where Tilk denotes the finish time of batch (i,l) in stage k. 
The timing of a batch between two consecutive stages is enforced by eq. (6), while 
release and due time constraints are enforced by eq. (7), where 

( ) ( ) ( )( ){ }, ' , , ' ' ' ':i ii i l l i i i i l l′= ∈ ∈ ∈ ≠ ∨ = ∧ ≠IL I L L is the set of all combinations of 
batches that can be sequenced on a unit: 

, , 1 , ,i l k ilk ij ilj
j ik

iT T τ X i l k
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∈

≥ + ∀ ∈∑
JA

L  (6) 
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2.2.3. Additional Constraints 
We introduce eq. (8) to exclude infeasible assignments. Eq. (9) takes care of forbidden 
paths, while eqs. (10) and (11) are used to avoid symmetric solutions: 

{ } { }'
' '

' '

min min( ) min min( ) ,ij ijl ij' i ij
i j i jj k j ki l k k k kj i

kX MS τ r τ k jτ
∈ ∈ ∈ ∈′ ′∈ ∈ > <

≤ − − + ∀ ∈∑∑ ∑ ∑
IA J IA J

IA L

J  (8) 

' , , ( , ')ilj ilj il iX X Z i l j j+ ≤ ∀ ∈ ∈ ∈I L FP  (9) 

1 , ,il i l iZ Z i l
+
≤ ∀ ∈L  (10) 

1 , ,il i l iB B i I l
+
≤ ∀ ∈ ∈L  (11) 

Integrality and non-negativity constraints are expressed by eq. (12). 

{ }' ', , 0,1 , 0il ilj ili l k il ilkZ X Y B T∈ ≥  (12) 

where IAj=I\FIj is the set of orders that can be assigned to unit j. 
We also fix all variables for l∉Li to zero. Finally, we fix binaries Zil to 1 for l ≤ min

il . 

2.2.4. Objective 
The objective is to minimize the makespan MS, which is greater than the finish time of 
all batches at the last stage. 
min MS (13) 

| | ,il iMS T i l≥ ∀ ∈ ∈K I L  (14) 

The MIP model P consists of eqs. (1) – (14).  Note that the model has an inherent 
hierarchy of decisions: a selected batch is assigned to a single unit in each stage via eq. 
(1), and a sequencing binary is activated if two batches are assigned to the same unit via 
eq. (4).   

3. Grid Computing 
Grid Computing utilizes a pool of computers as a common resource in an opportunistic 
manner. It does not require dedicated computers, but it simply uses distributively owned 
computational resources and facilitates better utilization of CPU power. We use the 
Condor resource manager  (Epema et al., 1996) that manages a large collection of 
Linux-based machines at University of Wisconsin Madison. However, Condor can be 
used on other machine architectures and operating systems (Windows,  Solaris) as well.  
We implement the proposed solution approach for this problem using GAMS/Grid 
options (Bussieck et al., 2007). We adopt the master-worker paradigm as a model of 
computation, where model P is decomposed into a number of subproblems (tasks). The 
master processor generates and spawns all the subproblems, and also collects the results 
of each subproblem (see Figure 1). A separate task directory is created for each 
subproblem by the master processor. Condor submits the subproblems to worker 
processors for execution. Condor does not require a shared file system between the 
master and the workers. Instead, it simply ships the subproblem directory to a 
“sandbox” on the worker machine, which in turn executes the subproblem within the 
sandbox. Once the subproblem is completed, a file “finished” is created in the 
subproblem directory of the master processor along with the requisite solution files. The 
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appearance of the “finished” file and the solution loading process are carried out in 
GAMS using the “handlecollect” primitive. 
Communication between the master and worker processors is implemented via the 
Condor_chirp utility. When a new incumbent is found, the utility updates the master 
processor by creating a “trigger file” in the task directory. Further, it uses the current 
best incumbent from the master processor to prune/continue the subproblem in other 
worker processors. Examples of the GAMS syntax used for grid submission, and the 
methods that deal with different grid engines are discussed in Bussieck et al. (2007). 

Master

Condor

Separate directory
for each subproblem

“finished” file upon 
completion of subproblem

…

Worker 1

Sandbox

Worker 2

Sandbox

“trigger” file is created if 
new incumbent is found

condor_chirp utility
Fetch: copies trigger file
Remove: removes trigger file after copying
Put: places new incumbent in master directory

Worker N

Sandbox
…

“handlecollect” repeatedly
checks for “finished” files

 
Figure 1. Architecture for Optimization on the GAMS/Grid using Master-worker Paradigm. 

4. Dynamic Decomposition Algorithm 

4.1. Strong Branching 
Our goal is to dynamically decompose original model P into smaller subproblems that 
can be solved using Grid computing. Unlike static decomposition, where subproblems 
are generated a priori, dynamic decomposition generates subproblems over the time as 
and when required. We first used strong branching with the goal of generating 
subproblems that are easier than problem P. Based on the size of the grid engine, 
problem P is partitioned using strong branching into a number of subproblems (open 
nodes), which are submitted to worker processors. Subproblems that remain unsolved 
after a resource limit, are re-partitioned using strong branching. The process is repeated 
dynamically as necessary until, in principle, all subproblems are easy to solve (Figure 
2a). Nevertheless, our preliminary results indicated that strong branching does not 
always lead to easier subproblems. Specifically, some of the open nodes correspond to 
problems that are almost as hard as the original problem P.  This motivated us to 
develop a domain-specific decomposition method. 
4.2. Proposed Decomposition 
Our solution method exploits the inherent structure of the problem to sequentially 
decompose original model P into subproblems of different levels of complexity (Figure 
2b). Subproblems are generated by fixing batch selection Zil and batch-unit assignment 
Xilj binary variables. 
4.2.1. Fixing Selection of Batches 
The 1st-level subproblems are generated by fixing the number of batches for each order 
i∈I. If li denotes the number of batches that are fixed for order i∈I, then each 
subproblem is generated by setting li = li

min = li
max, ∀i∈I in eqs. (1) – (14) of model P. 

Note that we consider all possible combinations of li between li
min and li

max for a given 
set of orders. 



Using Grid Computing to Solve Hard Planning and Scheduling Problems 5 

4.2.2. Fixing Batch-unit Assignments 
If any of these 1st-level subproblems remains unsolved within a resource limit (typically 
1 hr), then it is decomposed into a set of 2nd-level subproblems by fixing batch-unit 
assignment decisions at one stage kF (typically the bottleneck stage). If any of these 2nd-
level subproblems remains unsolved, then it is further decomposed into 3rd-level 
subproblems by fixing batch-unit assignment decisions at another stage. This process 
can be repeated multiple times, or it can be followed by the dynamic decomposition 
based on strong branching (section 4.1). 

1st-level 
subproblems
by fixing Zil

P

Promising

2nd-level 
subproblems
by fixing Xilj
in one stage

3rd-level 
subproblems
by fixing Xilj
in another stage

b) Domain-specific decomposition

Non-promising

Promising Non-promising

P
Master

Worker 1

Worker 2

a) Strong-branching-based decomposition

Worker 3 Worker 4

 
Figure 2. Dynamic decomposition based on a) strong branching and b) problem structure (grey 
nodes denote hard subproblems that need to be decomposed further). 

The number of different batch-unit assignments is very large even for medium size 
problems.  Some of these assignments lead to promising subproblems(i.e. subproblems 
that are likely to yield a good solution), while others lead to non-promising ones.  
Although non-promising subproblems are easy to prune, the resources required for their 
generation, submission and solution are substantial.  To avoid generating a large 
number of such tasks, we identify a subset of assignments that are likely to lead to good 
solutions and solve each one of them separately, while subsets of non-promising 
assignments are lumped into larger subproblems that are easier to prune.  
To this end, we use the idea of balanced batch-unit assignments: a min makespan 
schedule is likely to have the load in the bottleneck stage distributed almost equally 
among units.  Thus, subproblems that correspond to balanced assignments are generated 
by fixing all variables Xilj at stage kF: 

1, , ( , )Filj jk
X j i l= ∀ ∈ ∈J D   (15) 

where set Dj is the set of batches that are assigned to unit j in the current subproblem. 
Non-promising subproblems are generated by adding either of the following constraints 
for each unit in stage kF: 

,

1ilj
i l

MINX NJ≤ −∑  (16) 

,

1ilj
i l

MAXX NJ≥ +∑  (17) 

where NJMIN (NJMAX) is an estimate of the number of batches that if assigned to a single 
unit makes it highly (lightly) loaded. In this paper we use NJMIN = ⎣0.9M/|J(kF)|⎦ and 
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NJMAX = ⎡1.1M/|J(kF)|⎤, where M is the total number of batches in the current 
subproblem and |J(kF)| is the number of units in stage kF.  
Note that promising subproblems have all batch-unit variables fixed in stage kF from 
eqs. (1) and (15) but are hard to solve due to their poor lower bounds. On the other 
hand, non-promising subproblems are less tightly constrained by eq. (16) or (17) but are 
pruned easily because they encompass many but unbalanced assignments, thus have 
high lower bounds.  
Finally, we developed a pre-processing procedure in order to identify infeasible batch-
unit assignments. First, we remove subproblems with the forbidden batch-unit 
assignments. Then, we check the capacities of units to ensure that the demands of orders 
are met. Finally, when variables Xilj are fixed in more than one stage, we remove the 
subproblems with forbidden paths. The proposed procedure improves the performance 
of our algorithm by screening infeasible subproblems a priori, thus reducing the time 
required to generate, spawn and solve a number of subproblems.  

5. Results 
We present results for a process that consists of three stages with two units per stage 
and 10 orders. We consider two instances of this problem: instance 1 results in a 
problem with 10-11 batches, while instance 2 with 12-15 batches. The problem data are 
available from the authors. We analyzed the effect of both the automatic decomposition 
scheme based solely on strong branching (scheme 1) and the domain-specific 
decomposition (scheme 2).  
Instance 1 was solved to optimality in almost 2 hr of wall clock time and 2,905,742 
nodes using scheme 1. In scheme 2, we carried out the 1st-level domain-specific 
decomposition and then followed with decomposition based on strong branching. 
Instance 1 was solved in only 7.5 min of wall clock time and 9,601 nodes. For instance 
2, scheme 1 failed to solve the problem due to the generation of innumerable 
subproblems. On the other hand, scheme 2 solved the problem to optimality in 9 hr of 
wall clock time exploring 222,065,793 nodes. In this case, we carried out the 1st, 2nd and 
3rd level domain-specific decompositions followed by strong branching. 
In this paper we proposed a solution method to solve the problem of simultaneous 
batching and scheduling in multi-stage multi-product processes. Our method uses 
GAMS/Grid options and grid computation facilitated by the Condor management 
system. It couples problem-specific knowledge with strong branching to dynamically 
decompose hard problems into a set of subproblems. Our computational studies showed 
that the proposed method can be used to solve hard problems to optimality with 
reasonable time. Finally, we note that the proposed methodology can be applied to a 
wide range of production planning and scheduling problems.  
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