18th European Symposium on Computer Aided Process Engineering – ESCAPE 18

Bertrand Braunschweig and Xavier Joulia (Editors)

© 2008 Elsevier B.V./Ltd. All rights reserved.

6

Stalker et al
Service-Oriented CAPE

5

Service-Oriented CAPE: A New Direction for Software Applications
Iain D. Stalkera, Eric S. Fragab, Aidong Yangc, Nikolay D. Mehandjieva
aManchester Business School, The University of Manchester, Manchester M15 6PB, UK
bCentre for Process Systems Engineering, Department of Chemical Engineering, University College London WC1E 7JE, UK
cDepartment of Chemical and Process Engineering, University of Surrey, Guildford GU2 7HX, UK
Abstract

We introduce our vision of Service Oriented Computer-Aided Process Engineering. We consider this an exciting new direction for software applications, which promises increased flexibility and provides a way to leverage the resources of the Grid and the potential of current developments in the Web. We suggest that it is a natural, next step.
Keywords: Service Orientation, CAPE-OPEN, Architecture, Ontology Agents.

1. Introduction
Initiatives such as CAPE-OPEN (www.colan.org) have done much to promote the interoperability of heterogeneous software components for Computer-Aided Process Engineering (CAPE). Enthusiastic support of the resulting (interface) specifications by software vendors facilitates a plug-and-play paradigm in which an engineer can take the true “best-in-class” for each component, free of proprietary constraints, to create a (process) simulation which more closely captures his intentions. The EC-funded COGents Project (Braunschweig et al 2004) added an intelligent, semantic layer, using an agent-based software system to assist an engineer in identifying, locating, downloading and integrating those software components required for a specific CAPE application. So, what next for (software applications in) CAPE? We believe that a shift towards pure service-orientation is the next step for CAPE. Service-orientation abstracts to a level at which a service—think of as a remotely accessible software component—becomes the building block for (distributed) applications. It offers an opportunity to build upon the success of the initiatives above and promises many exciting returns, especially within the vision of “Software as a Service” where software is discovered, assembled and delivered on demand, typically at the point of need, and then “discarded”. We report on preliminary studies which convince of the achievability of such an approach. Our primary aim here is to clarify the SO-CAPE vision. We also present an initial model which combines CAPE-OPEN specifications, ontological structures and architectural descriptions inside of a multi-agent framework.
2. Preliminaries
We introduce the main ideas underpinning our SO-CAPE vision. We aim to provide an intuitive feel for these elements and to establish a vocabulary for use in the sequel.
2.1. CAPE-OPEN and COGents
The CAPE-OPEN initiatives (see www.colan.org) developed sets of interface standards to promote interoperability of heterogeneous process modelling software components. This provided a good solution to structural (in)compatibility problems. However, much was left to the (human) user. This motivated the COGents Project (Braunschweig et al 2004): a semantic layer was added in the form of a FIPA compliant (see www.fipa.org) agent-based framework to assist a user in such tasks as locating and integrating the “best” software component for a specific application. The (distributed) agents include design agents, monitoring agents, catalogues and wrappers for CAPE-OPEN software.
2.2. Service Orientation and Software as a Service
Service-orientation (in software applications) is “an emerging computing paradigm that utilizes services as the constructs to support the development of rapid, low-cost composition of distributed applications. Services are self-contained modules—deployed over standard middleware platforms—that can be described, published, located, orchestrated, and programmed using [typically] XML-based technologies over a network” (Papazoglou 2008). Current service-oriented approaches usually bundle services together as a “package solution. This reflects the influence of the application service providers (ASPs) offering complete solutions which combine software and infrastructure elements with business and professional services. Typically, the level of descriptions supported is not sufficiently detailed for domains such as CAPE. Yet, that essentially any piece of software can be appropriately “wrapped and packaged” as a service has motivated interest in exploring services at finer granularities to leverage the billions of services which could emerge in the wake of Web 2.0, cf. www.soa4all.eu. A corollary to this is the desirability of intermediaries, so-called (service) brokers, which maintain networks of providers of (fine-grained) services to be composed ad hoc to fulfil a specific consumer request, cf. Gold et al (2004). Traditionally, software is designed, developed, marketed, distributed and owned as a product. In contrast, “Software as a Service” (SaaS) encourages a pure service-based software platform to procure the necessary software at the instant that it is needed (Papazoglou 2008, Gold et al 2004). Resources are invoked as services under licence and “discarded” after use.
2.3. Architecture, Styles and Views
﻿The term “(software) architecture” has many interpretations. Our working definition is the highest-level views of a software system, capturing the significant structures, components, interrelationships and the externally visible properties of these, cf. Barr et al (2003). As the size or distribution of software systems increases, the locus of design decisions moves to “higher” levels: for example, the choice of algorithms and data structures no longer comprises the major design problem (Garlan and Shaw 1994).
Successful architectural models and solutions are “written up” for the purposes of re-use as architectural styles. Garlan and Shaw (1994) define an architectural style to be “a family of … systems [alike] in terms of a pattern of structural organization. More specifically, an architectural style determines the vocabulary of components and connectors that can be used in instances of that style, together with a set of constraints on architectural descriptions”. The appeal of architectural styles is that each encapsulates a compact description which answers such questions as “What is the structural pattern—the components, connectors, and constraints? What is the underlying computational model? What are the essential invariants of the style? What are some common examples of its use? What are the advantages and disadvantages of using that style? What are some of the common specializations?” (Garlan and Shaw 1994). Kruchten (1995) recognised multiple views of an architecture, including: a logical view (we prefer the more descriptive functional view) exposing functionality, a process view exposing control flow, a physical view which maps software onto hardware and reflects its distribution, and a development view describing the static organisation of the software in its development environment. These four views are brought together and illustrated using a representative set of scenarios. Other views are possible, e.g., a security view: it is the notion that acts as an informing principle.
3. The SO-CAPE Vision
To “set the scene” we take an example from the COGents project, viz.: modelling a leacher unit in the Polyamide-6 production process, where water is used in counterflow to leach caprolactam from Polyamide-6 (in pellets), see, for example, Eggersmann et al (2002) for details of the process. An appropriate software component (for this) must compute flow-rates and compositions of the departing streams and be compatible with its simulation environment. In COGents (Braunschweig et al 2004), such requirements are expressed as an instance of the OntoCAPE concept “modeling task specification” (MTS): the user is typically facilitated in the development of this by appropriate intelligent software. The instantiated MTS is sent to a matchmaking software agent which consults with known libraries and catalogues and returns a suitable component. In the actual test case, see Yang et al (2007), the matchmaking agent was unable to locate a suitable component; only an incomplete software component, namely, a partial differential equation set object. The description of this was returned to the calling application. Subsequently, an additional instance of an MTS was created to obtain a necessary (CO-compliant) numerical solver to complete the functionality required.

[image: image1.jpg][CapeUnit<...> *

oO——

[Cape ... *

Leacher Unit

_______ Solver

Equation
R Object

| Rg—— -
> Numerical

Figure 1 “Psuedo-Leacher”
Effectively, the local platform created a blueprint of the required component, and located appropriate components to implement it: once integrated, the two items comprise a “Pseudo-Leacher” Model; cf. Figure 1. This anticipates precisely the current trends in web computing, especially the service orientation and the fine granularity of services encouraged by SaaS. The SO-CAPE vision enlarges and formalises this. In a nutshell, the SO-CAPE vision combines a pure service-orientation, in the mould of SaaS, with architectural views and styles, and applies this to the CAPE domain. Software components are viewed as “composite services” which are “rented” rather than being bought. Such composite services can be composed ad hoc by brokers.
3.1. The Model
Suppose that we are seeking a CAPE-OPEN compliant unit operation. Currently, an engineer would (directly or indirectly) approach software vendors. If the unit does not exist, then he needs to use his expertise to create a blueprint and locate and assemble the appropriate pieces. Instead, in the SO-CAPE vision, we (would) view the CAPE-OPEN specification for a unit operation—indeed, each CAPE-OPEN specification—as an architectural description, with two views of the architecture:
· Structural View: the interface is an external structural view (strictly, part of the development view of Kruchten (1995)). The relevant architectural style is Encapsulation: a separation of properties (what) and implementation (how).
· Process View: CAPE-OPEN calling patterns in the Thermodynamics and Physical Properties packages, or the state-charts for Unit Operations, prescribe a (partial) order of steps. This is a process view of the internal architecture of the component, in the style of Pipeline (or Pipe-and-Filter) (Garlan and Shaw, 1994).
Each actual class of unit operation, e.g. reactor, leacher, etc. adds the functional view. Moreover, an engineer can enlarge on or augment these views to include performance requirements, operating ranges, etc.; cf. Physical View of Kruchten (1995). In the absence of the required unit operation, an engineer—or appropriate matchmaking agent if using a COGents-like platform—approaches a broker with these architectural descriptions requesting a composite service. The broker convenes an appropriate supply network of (potential) providers, cf. Gold et al (2004); for the “Pseudo-Leacher”, the broker assembles a network of providers of equation object models and numerical solvers. The broker uses the architectural descriptions received to create appropriate requests for services from (potential) providers. For example, we most likely want to build the equation model before we try to solve this, which suggests a Pipeline process, thus, the broker would arrange for the solver provider to contract to receive information from the equation model when the solution procedure is invoked; conversely, the equation model provider would contract to provide the information to solver provider. The broker and the engineer agree terms of use, price, duration, etc. and our engineer has a purpose-specific unit operation based on his architectural descriptions.
From this example, we can enumerate the essential ingredients of the SO-CAPE vision:

· A (predefined, agreed upon) set of architectural styles and views.

· A communication language and an appropriate ontology reflecting inter alia a shared ontological commitment to a set of components, architectural styles and views, etc.
· An implementation mechanism, which includes appropriate transport protocols, etc.; cf. the “Web services technology stack”, see, for example, (Papazoglou 2008).
· Service-orientation, including brokers and ideally a commitment to SaaS.

3.2. Initial Explorations
We created an initial model and a first, rudimentary implementation that we summarise here. Our initial explorations were to confirm that the necessary elements are currently available or fast emerging, thus we concentrated on establishing communication among agents, using a CAPE ontology enriched with additional (conceptual) structures (for services and architectural descriptions), modelled on the COGents platform (plus software broker). Our initial model comprises: CAPE-OPEN specifications to provide us with the bases for our architectural styles; COGents framework augmented with a broker to provide a communication language and implementation mechanism; and a simplified set of concepts from OntoCAPE augmented with concepts for architectural descriptions and service descriptions, borrowed from WSDL (Web Services Description Language), to provide our ontology. The additional class of agents, Brokers, was (is) a natural fit to the COGents model: a broker can register with appropriate libraries (and of course the directory facilitator) to make its services available within the platform(s); cf. Braunschweig et al (1994). The augmented COGents framework and accommodation of service concepts ensures the desired service-orientation. We (re-)implemented the augmented COGents framework in skeletal form using the JADE agent-based platform (http://jade.tilab.com/). We simplified relevant OntoCAPE concepts and devised new concepts for service descriptions enriched with architectural concepts. We created Protégé (http://protege.stanford.edu/) class structures for these and exported these for use by our agents, via the JADE Ontology Bean Generator, a plug-in for Protégé (http://hcs.science.uva.nl/usr/aart/beangenerator/index25.html). The broker agents were equipped with logic-based reasoning capabilities (implemented using tuProlog, see http://www.alice.unibo.it/tuProlog/) to allow decomposition of service requests and formulation of appropriate requests for subservices to be made to a “list of acquaintances” possessed by each broker.
3.3. Next Steps
Our preliminary implementations resulted in a framework synthesising the different pieces to “prove” the achievability of the approach. That the individual pieces are proven elsewhere—for example, COGents (Braunschweig et al 2004), CAPE-OPEN (www.colan.org), etc.—allowed us to focus on this framework rather than fully re-creating the individual aspects. Yet, it is only through a complete implementation, that addresses a number of case studies, that we can fully assess the potential of a service-oriented approach for CAPE. Indeed, this is our primary motivation for calling this “a vision”. Thus, the next steps are to create such an implementation and for this some groundwork is first needed, including a particular initial focus on establishing a stable set of concepts for enriching CAPE terminology with architectural styles and views.
4. Discussion and Concluding Remarks
CAPE is an exciting area in which to apply service-orientation as many of the “nuts-and-bolts” are available, in particular, there is a well-established vocabulary and the CAPE-OPEN standards provide the ready-made architectural descriptions and views. Service orientation offers a number of exciting benefits including flexibility, agility, increased choice, potentially an exponential growth in available resources and the removal of software maintenance and evolution concerns which come as a natural consequence (Gold et al 2004). The SO-CAPE vision (potentially) augments “try before you buy” with “use as you need” and allows for completely one-off ad hoc units, etc. In theory, a complete process could be designed and packaged as a unit operation. The realisation of the SO-CAPE vision depends significantly implementation issues and those pertaining to anticipated end users are key. A service oriented architecture (SOA) must address a number of usability issues if it is to be accepted. Engineers are conservative in the tools they use and will only accept new means of working if these are not intrusive. Perhaps, the most important user requirement, therefore, is one of transparency or immersion. Whether an application is provided as a service or resides locally should not be apparent to the user unless he wishes to know. When a user initiates a task, the software or service required should simply run. This requirement has impact on a number of tightly-related aspects, specifically:

· Efficiency. When objects, still the best means of encapsulating distributed tools and services (Coatta, 2007), are distributed, “latency”, the delay between initiation and delivery, becomes a problem. The technologies for information transfer, such as the Grid, CORBA/COM, COGents and ontologies (O'Hara, 2007), provide the means for distribution. However, they do not and cannot address latency directly. Caching and data aggregation are well known approaches for tackling latency in SOA, but “SOA is no more a silver bullet than the approaches which preceded it” (Coatta, 2007). The key is ensuring that the cache and data aggregation techniques used are targeted dynamically (see below). One solution is the use of knowledge-based agent systems that can, over time, learn to predict what the users are likely to require and thus cache expected sets of services locally to counter latency problems.
· Flexibility. It is impossible to predict exactly how any user may wish to use the system provided. The language for describing requests must be flexible, extensible and generic enough to cater for the unexpected, perhaps, sufficiently “self-aware” in the sense of being able to identify when it is unable to describe what is required.
· Shared learning. A key aspect of most personal user agents, i.e., agents which learn to interact with a given user, is that they target a particular user. For SO-CAPE to be successful, such learning should be shared across the community, improving (over time) the experience of novice users. However, this sharing of knowledge must not overwhelm novice users so a balance will be required.

Secondary implementation issues include security, payment and access when not connected to the Internet. The latter can be addressed by long term caching of objects subject to the satisfactory resolution of the efficiency (see above). Other issues are the target of research in SOA and networking communities and are not specific to CAPE. In summary, the key is knowledge acquisition and management, not just of the domain (CAPE) but of the users, how they work and what they expect.
We have introduced our vision of service-orientation in CAPE. We have indicated how service-orientation can both enrich and complement traditional approaches; and further that a pure service-oriented model, in the mould of SaaS, is both realisable and desirable. To us, these studies provide a starting point and we invite further work.
References

L Barr, P Clements, R Kazmann, 2003, Software Architecture in Practice, Addison-Wesley.
B Braunschweig, E Fraga, Z Guessoum, W Marquardt, O Nadjemi, D Paen, D Pinol, P Roux, S Sama, M Serra, I Stalker, A Yang, 2004, “CAPE Web Services: The COGents way”, In A P Barbosa-Póvoa & H Matos (Eds.), European Symposium on Computer Aided Process Engineering 14 (ESCAPE-14), Elsevier, 1021-1026.
T Coatta, 2007, “From here to there, the SOA way”, ACM Queue, 5(6).

M Eggersmann, J Hackenberg, W Marquardt, and I Cameron, 2002, “Applications of modeling - a case study from process design”, In B Braunschweig and R Gani (Editors) Software Architectures and Tools for Computer Aided Process Engineering, 335–372, Elsevier.
E Gamma, R Helm, R Johnson, J Vlissides, 1995, Design Patterns: Elements of Reusable Object-Oriented Software, Addison-Wesley.

D Garlan, M Shaw, 1994, “An Introduction to Software Architecture,” In Ambriola, V. and Tortora, G. (Eds.), Advances in Software Engineering and Knowledge Engineering, Series on Software Engineering and Knowledge Engineering, Vol 2, World Scientific Publishing Company, Singapore, pp. 1-39, 1993. Also available as: Carnegie Mellon University Technical Report CMU-CS-94-166, January 1994.
N E Gold, C Knight, A Mohan, M Munro, 2004, “Understanding Service-Oriented Software”, IEEE Software, 71-77.
J O'Hara, 2007, “Toward a commodity enterprise middleware”, ACM Queue, 5(4), 48-55.
P Kruchten, 1995, “The 4+1 view model of architecture”, IEEE Software, 12 (6), 42-50.

M P Papazoglou, 2008, Web Services: Principles and Technology, Pearson Education Ltd.
I D Stalker, E S Fraga, 2007, “Enhancing Automated Process Design with Cognitive Agents, Distributed Software Components and Web Repositories”, Engineering Optimization, 39(5), 615-630.
A Yang, B L Braunschweig, E S Fraga, Z Guessoum, W Marquardt, O Nadjemi, D Paen, D Pinol, P Roux, S Sama, M Serra, and I D Stalker, 2007, “A multi-agent system to facilitate component-based process modeling and design”, Computers and Chemical Engineering, In Press.
