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Abstract

In this work, the use of classical least-squares error for parameter estimation when applied to chemical engineering problems is questioned. Considerable potential now exists for improvements in data fit with the introduction of robust statistical estimators. The τ-estimator, which is an estimator with high breakdown point and high efficiency, was implemented using a genetic algorithm (GA) and applied to model fit in chemical engineering problems. The method was validated and applied to three chemical engineering problems, with comparison between least-squares and τ-estimator. The results show that the τ-estimator coupled with GA produces a best data fit. 
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Introduction
The most widely used model formalization is the assumption that the experimental data have a normal (Gaussian) distribution of the errors. The question arises as to whether the assumptions and methods that were taught are still sufficient for the data analysis needs of chemical engineer. For example, Clancey [1] examined approximately 250 error distributions involving 50000 chemical analyses of metals and found that only l0-15% of the series could be regarded as normally distributed of errors. This may be due for outliers or leverage point in the data. Outliers are observations that are well separated from the majority of the data, while leverage points are observations which are isolated from the other observations [2-3]. If the data are assumed with errors normally distributed but their actual distribution has heavy tails, then estimates based on the maximum likelihood principle not only cease to be “best”, but they may have unacceptably low statistical efficiency. These potential deficiencies have been investigated since the 1960s, and some solutions were proposed [2-6]. In order to evaluate the robustness of the methods, the term breakdown point can be defined as the smallest fraction of contamination which a given sample may contain without spoiling the estimator completely [2-3]. The breakdown point for least-squares is 0%, which means that a single outlier in a data set destroys the estimator. In the last years, several estimators with high breakdown-point (50%), were proposed [3,4]. However, these estimators are inefficient when all data have normal errors. The efficiency criterion is calculated as the ratio of the mean squared error of a robust estimator versus the least-squares estimator for data with normal errors. Several methods have been proposed which combine good efficiency with high breakdown-point. The τ-estimator [5] is an alternative to the classical methods in chemical engineering regression. Thus, the goal of this work is to compare the use of the least-squares and τ estimators. Section 2 shows four estimators, Section 3 shows the validation of the proposed procedure and Section 4 shows the examples.

1. ESTIMATORS
In a general form, the residual of a regression is:
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where N is the number of data points, y is a dependent data vector, x is an independent data vector, β is a unknown parameters vector, and f is a model function. The vector β is found by minimizing a scalar objective function (δ), which can be selected with classical or robust estimators.

1.1. The Classical Estimator Least Squares Error (LS)
Assuming that there are no errors in x, errors in y are normally distributed (mean zero and constant variance), and errors in y are independent, this estimator minimizes:
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1.2. Generalizing Maximum Likelihood (ML),
This estimator need an adequate mathematical model for data, the measured responses from the ith experiment with normal distribution, and independent measurements of y1,..,yN, with the variance during each experiments precisely known. However, the requirement of exact knowledge of all variances is rather unrealistic. Fortunately, in many situations of practical importance, one can make certain quite reasonable assumptions about the value of variance that allow obtain the ML estimates [2,3]. 
1.3.  The Robust Regression Least Median of Squares (LMS),
Rousseeuw [4] proposed this estimator that minimizes the median of residuals:
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This estimator provides a breakdown point of 50%, but has low efficiency.
1.4. The Robust Regression τ-estimator,
Yohai and Zamar [5] proposed another robust estimator with high efficiency, by
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subject to the constraint
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where Sn is an implicit variable and the choice of ρo or ρ1 is defined as:
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The values for ρo(u) are c = 1.56, ρ1(u) is c = 6.08 and b* = 0.203. Then, the τ-estimator has a break point of 50% and an efficiency of 95% under Gaussian errors.

2. Validation of Procedure
Robust estimators often used complicated deterministic algorithms. In this work, a stochastic algorithm, the genetic algorithm (GA) is fully explained by Alvarez et al. [6], is used. This GA minimizes the objective function OF, and the fluxogram from f1 up to fn function models is shown in Figure 1. In the first step, residuals for all models are evaluated; in the second, the estimator and constraints are evaluated; at last, in the third step the OF is evaluated (δ* is a current worst value of δ; (Δ are other restrictions).
[image: image7.jpg])

1-Bvaluation of dependent vector and residuals. 7,7 1,5 .1y o )

¥

2 Computing 5 value of robust estimator and consteaints: 3,3, (b, .b, for westimator)

S+ b b+ LAl FO=5%+5b%b)+21





Figure 1. Fluxogram of the procedure for the function objective computation.
2.1. For a Linear Model

Barreto and Maharry [7] showed that the standard algorithm for LMS does not find the true LMS fit for regression through the origin. For a simulation data set [7], the standard algorithm gave y = 1.5x, while the genetic algorithm gave y = 2.4x, the true LMS fit.
2.2. For a Quadratic Model
Chatterjee and Olkin [8] described a non-parametric robust estimator developed only for a quadratic polynomial function. Figure 2 shows an example with simulation data, least-squares, non-parametric, LMS and τ estimator fits. The pattern of the data is clearly quadratic; the superiority of the robust ﬁt is clear. For LS, the ﬁt is y = -28.772 + 9.329x + 0.0414x2, with a R2 of 0.88. The non-parametric fit gives y = 11.586 – 2.556x + 0.724x2. For LMS and τ estimator using the proposed procedure, the fit give y = 13.593 – 3.407x + 0.784x2 and y = 15.452 – 3.567x + 0.784x2, respectively. All robust estimators have a R2 of 0.84. Then, R2 has not utility for data with outliers. 
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Figure 2: Simulation data fitted with a quadratic polynomial model using different estimators.

2.3. For an Exponential Model

Motulsky and Brown [9] proposed a new method for diagnostics outliers, applying it for 13 simulation data points. Their procedure, coupled with an exponential model, gave y = 1142e0.2153x -67.44, while the τ estimator using the proposed procedure gave y = 1206e0.202x -100. Both results give similar curve fitting.
3. Examples and Results
3.1. Dynamics of growing bacterial culture

The data used were presented by Baranyi et al. [10]. A logistic function was used as empirical model for the data fit [11]. Figure 3 shows the experimental data and the fit using LMS, LS and ( estimators; the maximum relative deviations [12] without the two outliers are 19.7, 5.4% and 2.5%, respectively.
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Figure 3: Growing bacterial culture data fitted with logistic function using LS and ( estimator.

3.2. Correlation of density of a ionic liquid
Densities of the ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate were measured by Maduro [13] by using an Anton Paar DMA 5000 densimeter. In Figure 4, according to Zhiyong and Brennecke [14], the density data must follow a straight line, so the point at 348 K is an outlier. For a linear model, the LS gives d = (-9.115x10-4)T + 1.507 and the τ-estimated gives d = (-8.650x10-4)T + 1.256. Both models have R2 = 0.99, but the maximum relative deviations without the outlier are 0.13% and 0.08%, respectively.
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Figure 4: Experimental density data and linear fit with least squared and τ estimators.

Vapor Liquid Equilibrium (VLE)
3.2.1. CO2 + ethanol

Cardozo-Filho et al. [15] applied the ML estimator for VLE of the system CO2 (1)+ ethanol (2), using the Peng-Robinson equation of state [16] with two interaction parameters (kij, lij) in the classical Van der Waals mixing rules. With the same thermodynamic model and the τ-estimator, there were used the residuals 
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where P is the pressure, y1 is the molar fraction in the gas phase, and the superscript “exp” and “cal” are the experimental and calculated values, respectively. The thermophysical properties were taken from Diadem Public [17]. The results for ML with kij = 0.09048 and lij = -0.01414 yields a deviation |Δy1| = 0.4%; for the τ-estimator with kij = 0.08610 and lij = -0.01869 the deviation was |Δy1| = 0.4%. These numerical results do not show the high deviations with ML for 0.6 < x1 < 0.7 at 333 K, where the maximum relative deviations without the leverage point are -3.1% and 2.4%, respectively. Figure 5 shows that the (-estimator fit approaches better the real behavior. 
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Figure 5: Experimental VLE data fitted with PR/Van der Waals model using ML and τ-estimator.

3.2.2. CO2 + ionic liquid systems
VLE data for the system CO2 (1) + 1-butyl-3-methylimidazolium hexafluorophosphate (2) at 348 K [18] were correlated using the Peng-Robinson equation of state with the Wong-Sandler [19] mixing rule coupled with the UNIQUAC activity coefficient model [20]. The binary interaction energy parameters for UNIQUAC model (uij, uji), as well as the binary interaction parameter of the Wong-Sandler mixing rule (kij), were estimated through the proposed procedure, with the LS and τ estimators. The residuals are:
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where P is the pressure and y1 is the molar fraction in the gas phase. For a good fit, the accepted values of (1-y1cal) < 10-3 and %ΔP < 10 are used as constraints for every data point in the procedure. The critical properties, acentric factor and structural parameters were taken from Diadem Public [17], Valderrama and Robles [21] and Álvarez and Aznar [22] respectively. The data and fit are shown in Figue 6. For the LS-estimator, kij = 0.5130, uij = 778.7311 kJ/kmol and uji = 280.2641 kJ/kmol, with |P| = 7.9% and maximum y2 = 3.10-3. For the τ-estimator, kij = -0.0069, uij = 2.5084 kJ/kmol and uji = 1224.1643 kJ/kmol, with |P| = 8.1% and maximum y2 = 3.10-3. The maximum relative deviations without the two leverage points using LS an (-estimator are 31.2% and 26.4%, respectively. 
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Figure 6: Experimental VLE data fitted with PR/Wong-Sandler model using LS and τ estimators.

4. Conclusions

Considering that experimental data always have spurious points and the numerical results of a classic estimator do not show the quality of the fit, an efficient and robust estimator as ( estimator is the best way to implement a mathematical model on experimental data in chemical engineering regression. The goal of the future is developed a simpler robust method.
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