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Abstract

Distillation is central to many processing plants. Mainly in operations one has an obvious need for dynamic models. The most commonly used models are implementing steady-state or “pseudo-steady-state” assumptions, which are justified on order-of-magnitude considerations. The computation of such models is a notorious problem, since they consist of a large number of heavily coupled algebraic non-linear equations, which have a small convergence radius, leaving one with the very difficult task of finding good starting values for the solver. Whilst computing has improved tremendously, little progress has been made in solving the initialisation of such process models.

A robust initialisation procedure is presented, which builds on a dynamic flash model. Starting from very simple initial condition the process is integrated applying a sequential and smoothed procedure which converges to the desired operating point that in turn can be used as starting point for the integration of simplified models.
Keywords: modelling, initialisation, distillation.

1. Context
Distillation models are used widely in industrial applications. Though there is an obvious need for dynamic models, the most common models are steady-state models, which are mainly used in design and retrofitting, but also in some control and planning applications. And, even though some applications require, the most commonly used dynamic models make at least partial steady-state assumptions. In particular the gas-phase dynamics and the tray mixing dynamics are neglected. 
The computation of steady-state distillation models is notoriously difficult, the main reason being that it consists of a large number of heavily coupled algebraic equations, the size of which proliferates with the number of components and number of trays. Solving such a steady-state model implies solving the large-scale algebraic equation system for a single set of roots that represents the equilibrium state of the distillation. The numerical methods being used for this purpose have a very small convergence radius, which, in the past, gave rise to long-lasting research. Partially simplified dynamic models exhibit the same type of problems for the simplified parts.
The body of steady-state computation procedures is large. For example: C. D. Holland and others (1988, 1993) extended the range of convergence of the classical Newton- Raphson method and modified forms of it by use of the functional transformation method. Taylor and Lucia (1996) faced the solution of steady-state mass and energy balances plus equilibrium relations (MESH equations) in distillation models letting the iterations of Newton method pass trough the complex domain. The problem with initialising such algorithms was also mentioned by Rabeau et al. (1997) and more recently by Grossmann et al. (2005). Thus whilst computing has improved tremendously, the initialisation procedure is still an unresolved issue.

The aim of this research is to establish a robust procedure for the initialisation of dynamic models that show “pseudo-steady-state” assumptions including models that assume steady-state for the overall model. It is also speculated that the type of model being used here may be just as fast as the partially simplified versions as the computational complexity is quite comparable.

2. The Idea
The idea for approaching the initialisation problem is to use a dynamic description that mimics the behaviour of a distillation column close enough so as to simulate a continuous time-evolution path starting with a very simple generic initial state and integrating up to the desired operating condition. Thereafter one may switch to a steady-state description of the apparatus and continue the computations, if so required. 

Dynamic simulations are very robust. Choosing an appropriate dynamic description and choosing reasonable initial conditions should enable the user to compute a solution that is sufficiently close to the desired steady-state solution if one chooses in parts simpler elements for the description of the material behaviours.

Thus by switching from a steady-state simulation to a dynamic simulation one substitutes the complex initialisation problem by a simple one plus an integration over a feasible physical path. Mathematically this implies that one solves a set of Differential Algebraic Equations (DAE) instead of an essentially equally large set of algebraic equations. With DAE solvers having advanced tremendously over the past decades, using a dynamic model may even be competitive to using a steady-state model.

The strength and robustness of the dynamic approach have been tested by the authors on a model for a distillation column working in total reflux.

3. The Dynamic Model
3.1. Description

The distillation column is represented as a stack of dynamic flashes: one for each tray, one for the reboiler and one for the condenser. Each dynamic flash consists of two lumps, one for the liquid phase and one for the gas phase. The two lumps exchange heat and mass through the common interface. Down-going liquid streams and up-going gas streams connect the stages vertically. The column is driven by the heat input in the reboiler and the removing of the heat in the condenser. 

The state variables of the model are the component masses and internal energies of each phase in each stage. The volume is fixed for each stage. To calculate the temperature of the phases, one needs to solve an algebraic equation in the temperature given internal energy, volume and mass composition using the material models for each phase. For more details on the model the authors refer the reader to their earlier paper (Dones and Preisig, 2007) 
3.2. Material model: equation of state

The procedure has been tested for a demonstration system using relatively few trays (5-50) besides the reboiler and condenser. For the representation of the material properties two models were used: 1) Ideal liquid and ideal gas; 2) Peng-Robinson equation of state for both phases. The used implementation, a highly portable tailored thermodynamics code, provides the Helmholtz energy and its derivatives (entropy, pressure and chemical potentials) given the canonical variables temperature, volume and component mass (Løvfall, 2008).
3.3.  The continuation path

The procedure representing a feasible physical path leading to the desired steady-state starts with a set of isolated containments forming pairs of gas and liquid both in isolation. Those are first brought in contact with each other, pair by pair thereby fixing the respective joint volume to represent the volume of the reboiler, each tray and condenser, respectively. The individual phases are initialised within the feasible operation domain. Since a priori the two phases are not in equilibrium, they exchange energy in form of heat, volumetric work and mass.
The first step is completed when the two phases in each part of the column have reached an equilibrium. Next the different stage models are vertically connected by enabling the up-going gas streams and down-going liquid streams, enabling cooling in the condenser and heating in the reboiler at the same time (Dones and Preisig, 2007).
3.4. ODE vs. DAE
The systematic construction of the model yields a natural computation sequence with each temperature to be computed from an implicit equation involving the respective material model. The model equations can be solved in two ways. Either the implicit equations for the temperatures are solved in the inner loop using a root solver, for example a Newton procedure yielding a set of differential equations the right-hand-sides of which can be readily computed. Thus the integrator sees a set of ordinary differential equations (ODEs). Alternatively, the temperatures are augmented to the state vector and passed on to the integrator. In the latter case the mass matrix sets the respective derivatives to zero, providing the solver with a system of differential algebraic equations (DAEs). 
4. Some results
[image: image1.emf]The computational studies implementing the above-described approach showed that the suggested procedure is indeed very robust with respect to the chosen initial conditions for a two component mixture, which was taken from an industrial problem, namely the C-4 splitter (iso-butane and n-butane). The strength of the “dynamic initialisation” lays in the simple choice for the initial conditions, as the dynamic model has a much larger convergence radius than the model assuming singular perturbation for the gas phase. The following figure (Figure 1) reports a result for a small column (30 trays + reboiler and condenser): starting with uniform concentration profile (50%, 50% in each phase in each stage), one arrives at a feasible concentration profile at the end of the simulation.
The performed simulation studies the model in different modes, thereby testing certain features such as checking the performance of the computation. 
4.1. Choice of material model

As previously introduced, the here-studied material models are: 1) ideal liquid and ideal gas, and 2) a Peng-Robinson model for both phases.
4.1.1. Ideal liquid and ideal gas law
For the gas phase the well-known state equation describing an ideal gas is used to calculate the pressure given the volume and the temperature. The volume is the difference of the fixed volume assigned to the stage and the liquid-phase volume. The temperature is obtained from the internal energy and the material property description solving the respective implicit scalar equation.
For the liquid phase, the volume is not and independent variable but it is calculated from the component mass, the temperature and a reference pressure. So the volume of the liquid phase does not enter the calculation, but only the temperature and the composition.
The result is a simple model which makes the simulations robust and results in reasonable solutions, which are close enough to the observed values. 
4.1.2. Peng-Robinson equation of state

In this situation, the same thermo-package has been adopted for both phases. Such model relies on a cubic equation of state. The strength of this model is at the same time also its weak point because the model makes a priori no distinction among the phases. The material is considered a generic fluid. The model depends on the temperature, the volume and the component mass of the system. It should be noted that the computation of the physical properties are very sensitive to small errors in the volume especially for the liquid phase, which in turn can have disastrous effects on the success of the integration.

4.2. Continuity issue

The sequential procedure firstly gets the two isolated phases in each stage into contact. Once converged the gas and liquid streams are enabled. The thereby injected discontinuities have been observed to be one of the major problems for the integrator to succeed. So two different strategies to overcome the problem have been studied:

· Enable the connections in the sequence: first the liquid streams, then the external cooling, next the gas and finally the heating in the boiler. In all cases virtual controllers were implemented for smoothening of the transitions (for more details see also Dones and Preisig, 2007).

· Enable the connections simultaneously, again adopting virtual controllers for each stream.
In the case of ideal mixtures, both suggested paths succeeded in the integration. When using the cubic thermo-package, it was found that enabling the connections of the stages without any damping, as this was done in the authors’ previous paper (Dones and Preisig, 2007), lets the system reach a temporary situation between the steps where the integrator (MatLab®’s ode15s) tries to take a longer steps. The consequent change in the state of the system, despite it being small, is often too large and results in the thermo-package to provide unreasonable values and consequently the integration to fail.
Being less careful and applying the connections simultaneously, the integrator is not tempted to try taking longer integration steps, which results in the integrator to converge more reliably.
The study of these paths showed that enabling the gas connections does not necessarily imply that a gas stream is flowing upwards as the pressure profile may be inverse after the individual stages have converged to a local equilibrium and that it is necessary to have a sufficiently high overpressure in the lower stage to overcome the static pressure and the friction to drive the gas stream upwards. In the current arrangement, the gas flows were clipped during the time of an inverse pressure profile. For the enabling of the gas streams upwards the procedure was tested where the single gas connection is enabled when the pressure in the lower stage balances the static pressure on the next higher stage. The effect was that all the intensive variables were strongly affected particularly in the lower part of the column, which in turn often resulted the integrator to fail. Forcing the integrator to take smaller steps did resolve the problem, but resulted in excessively long integration times.
4.3. ODE vs. DAE

Solving the implicit equations for the temperatures inside the integration loop makes it possible to formulate the problem as a set of ODEs Alternatively the system’s states can be augmented with the temperatures setting the respective time derivatives to zero yielding a set of DAEs. Choosing the first approach is motivated by the following two reasons:
· The integrator sees just a set of ordinary differential equations (ODE), with the code being kept clean and ordered.

· Matlab®’s ode15s has an option that can force a variable to not be negative, which is essential when integrating models with a high number of stages, where the purity of one component is as high as the risk for the integrator to take a step that results in negative masses, consequently resulting in a failure of the integrator. This non-negativity option can only be used for ODE systems. 

The down-side of the ODE-approach is that it requires the tuning of two tolerances, namely one for the algebraic solver for the temperature and one for the ODE solver. The algebraic solver must be required to solve to the ultimate level of accuracy, since it sits in the inner loop and because of the high sensitivity of the internal energy to the temperature. It was found that also for the integration, a high accuracy is required for the integrator to succeed reliably.
4.4. High purity
By increasing the number of stages in the column, one increases first of all the number of coupled equations the solver must face. It is observed, that the computation time scales roughly exponentially with the number of trays.

A high number of trays results also in a higher separation, causing eventually a component mass to approach near zero in either extreme of the two column sections. This can yield numerical problems, since the integrator may take a step into the infeasibility region. In these situations the component masses must be forced to remain in the positive domain, so the use of the previously mentioned non-negativity option in the integrator must be enabled for high purity systems.  
5. Conclusions

Steady-state or “pseudo-steady-state” distillation models, which are most commonly used in industry and academia, are known to be extremely sensitive to the initial conditions as they exhibit a very small convergence radius. Stepping back and using a model that includes the gas dynamics results in highly stiff ODE or DAE problem, which, though, can be solved mainly by moderating the high input dynamics when coupling the stages after each of the stages has converged individually. The high-dynamic model has a significantly larger convergence radius and can, if not as a permanent substitute, be used to find good initial conditions for the lower-dynamic model. The future will show to what degree the computational efficiency differs and if it is worthwhile to switch between models depending on the dynamic regime. 

Concerning the thermodynamic description, the use of ideal gas and ideal liquid laws have shown to be more robust then other, more advanced equations of state such as cubic equations. One may argue the approximations introduced by such simplifications, but in the context of using this approach as initialisation tool the authors stress that the quality of the solution is probably good enough also for less ideal mixtures. Certainly for the studied mixture of hydrocarbons the accuracy is hardly an issue as they have no azeotrope and are not polar, reducing the need for a more complex equation of state.
As expected, the purity of the separation increases with the number of stages, and, since the model mimics a total reflux column, fewer trays are enough to achieve good separation. However, the computation time is heavily influenced by the size of the column, mainly because new stages introduce new equations and increase the degree of coupling of the equation system.

Research is still open on the integrator side. The authors have tried different numerical solvers available in MatLab®, recording better performances with ode15s. However, the authors think that a better grasp of the numerical solver is needed.  The basic idea is to formulate a model, and then find a proper solver for the user’s type of problem. So one possible future extension of this work can be found in the study of the numerical integration of the problem. 
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Figure 1 Evolution of the concentration profile
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