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Abstract

An aggregated model for multicomponent distillation columns is first presented. The model allows predicting internal temperatures and flows for conventional columns operating at minimum reflux. The aggregated model is then embedded in a superstructure that corresponds to a sequence of distillation columns performing the separation of a multicomponent feed into pure components, and a Generalized Disjunctive model is generated. A new version of the Logic-Based Outer-Approximation for Global Optimization algorithm was used to overcome the difficulties for finding the global optimal solution due to nonconvexities of the feasible region. Lower bounding linear problems are set up, where the nonlinearities of the original model are replaced by piecewise underestimators. The algorithm solves iteratively global and local bounding MILP problems and reduced NLP problems. Convergence is achieved when the global bounding problem is infeasible, showing that there are no better solutions. The performance of the algorithm is illustrated with the separation of a four-component mixture. 
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1. Introduction

Distillation is the most energy consuming unit operation for separation. Energetic favorable process is also economical favorable, since low energy input leads to low vapor flow rates and consequently small column diameter. Columns running at minimum energy demand are characterized by the existence of invariant internal composition points, called pinch points (Underwood, 1946). 

Optimal synthesis of distillation sequences problem has been widely studied. However, the literature in global optimization of distillation synthesis is not extensive. The application of a global optimization algorithm to a distillation synthesis problem was addressed by Smith (1996). Floudas et al. (1999) propose two simple models of separation column for the test of global optimization algorithm. Recently, Burri and Manousiouthakis (2004) presented the global optimization of reactive distillation systems using IDEAS (Infinite DimEnsionAl State-space). Gangadwala et al. (2005) combine local and global optimization for approaching the optimal design of a reaction-separation system. 

The present work has a double goal. The first one is to present a GDP aggregated model of distillation sequences that predicts tight bounds for the minimum energy requirement for carrying out a specified separation. Each column in the sequence is modeled with a NLP model, based on the work by Caballero and Grossmann (1999). It is assumed that minimal vapor flowrate solution is a good approximation to the minimal cost solution. 

The second goal concerns the global optimization of the generated model. The solution methodology is designed to overcome two frequent difficulties appearing in nonconvex optimization: obtain a feasible solution, and get the global optimal solution. The algorithm is a modification of the Logic-Based Outer Approximation for Global Optimization algorithm by Bergamini et al. (2005a).

2. Aggregated model for simple column
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The model of a simple column was derived in Bergamini et at. (2005b). It is based in a column representation shown in Figure 1. It consists on four mass exchange modules and two heat exchange modules (condenser in top, reboiler in bottom).

Figure 1. Distillation column representation

In addition to the condenser and reboiler, there are six locations of interest: S = {t, pr, ft, fb, ps, b}, where t and b are the top and bottom of the column, ft and fb are the points above and below the feed point, and pr and ps correspond to the potential location of pinch points in the rectifying and stripping section respectively.

Constrains in the model take into account component and total mass balances in each module, concentration definition, global mass balance, balances in condenser and reboiler, equilibrium condition in feed location, feasibility constraint for mass transfer, and product recovery. Feasibility constraint determines the distribution of the non-key components, imposing that the concentrations at the extreme of each module lie bellow the equilibrium curve (Bagajewicz and Manousiouthakis, 1992). 

3. GDP model for selecting optimal distillation sequence

A superstructure based on the state equipment network (SEN) (Yeomans and Grossmann, 1999) is considered. In the SEN representation, the number of columns in a sequence for a C-components feed is C-1. The superstructure also considers mixers at the feed of each column, and splitters in the inlet of the system, and in multicomponent product streams for redirecting the flow to other columns.

The GDP model has boolean variables (representing the selection of task for each column), global constraints, conditional constrains and logic constraints. The global constraints are mass balances, equilibrium equation in the feed and pinch point definition for each column in the superstructure. The conditional constraints, modeled with disjunctions, define what states are generated in the splitters and how the components are distributed inside the column (feasibility constraint). There is one disjunction for each column in the superstructure, with as many terms as task the column can perform. Finally, logic constraints impose consistency in the task assignment. The objective function to be minimized is the sum of vapor flows. 

4. Global optimization of the GDP model of distillation sequences.

Let us denote P the generated GDP model. Clearly, P is a nonconvex GDP. The nonconvex constraints are bilinear terms in mass balances and concave terms in the definition of equilibrium constants. They may cause local solver to be unable to find a feasible solution, or to miss the global solution. Thus, a variation of the Logic-Based Outer-Approximation for Global Optimization (OAGO) algorithm (Bergamini et al., 2005a) is applied to solve P. It relies on bounding linear GDP and MILP subproblems whose feasible solutions are approximated solutions with objective value lower than the best known solution. Therefore the algorithm is focused to overcome the nonconvexities in the model and get the global optimal solution.

4.1. Piecewise relaxation

Linear underestimating problems are set-up replacing the nonconvex terms by piecewise underestimators. In P, there are convex, bilinear and concave univariate terms.

Piecewise underestimations for concave univariate functions are derived as follows. Let h(x) be a concave univariate function and let xlo and xup be the lower and upper bounds of x. Consider k+1 grid points K = {x1*, x2*,… xk+1*}, with x1* = xlo, xk+1* = xup, and xi*< xi+1* for i = 1,...k. New binary variable wi and continuous variables (i and (i are required. For x([xlo, xup], the piecewise formulation of the underestimator of h(x) is,
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For bilinear term z = x.u, underestimators are obtained by multiplying Eq (1a) by u and replacing (iu by (i . 
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(3)

The bilinear terms (iu is included, for every i, by means of its convex envelope.

As it is proven in Bergamini et al. (2007), estimators given by Eq (1), (2) and (3) are exact in every subintervals, [xi*, xi+1*] except, maybe, one. 

Convex terms f(x) are underestimated by linearizing them in points xk as follows,
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Other sources of nonconvexity, such as multilinear terms, can be reformulated using bilinear and concave terms. However, this makes the size of the problem increase.

Bounding subproblems are constructed for approximating problem P. They involve all the linear restriction of P, in addition to the linearization of the convex terms and the mixed-integer formulation of the piecewise relaxation of bilinear and concave terms. 

4.2. Algorithm

Let us denote as GR-PK,L the global relaxed problem obtained from P by replacing each nonconvex term by the corresponding piecewise underestimation constructed over a partition K, and each convex terms by its linearization on points given in the set L. In addition, this problem has a constraint that imposes an upper bound in the objective value, i.e., ( ( (up, where (up is a valid upper bound for the objective valiable (. In this way, any feasible solution of GR-PK,L is an approximated solution of P with improved objective value. 

Moreover, let us denote LR-P(Yl)K,L the local bounding problem, generated from GR-PK,L by fixing the boolean variables in values Yl that satisfies the logic constraints. Finally, let us denote P(Yl) the problem P with fixed values of the boolean variables. Thus, GR-PK,L is a linear GDP problem, LR-P(Yl)K,L is a MILP problem, with binary variables defining the piecewise estimations, and P(Yl) is a nonconvex NLP problem. 

Since tight variable bounds are essential for obtaining good approximations, a bound contraction procedure is considered in order to reduce the variable space (Zamora and Grossmann,1999). 

The steps of the algorithm are detailed below.

· Initialization: Initialize the upper bound (up and the optimality tolerance (.

· Outer optimization: Set the outer grid K and the set of linearization points L. Find a feasible solution of GR-PK,L. If the problem is infeasible, go to step Stop. Otherwise, denote Yl the Boolean variables, denoting the selected assignment of task to column, fix Y = Yl, and go to step Bound Contraction.

· Bound Contraction: apply the bound contraction procedure. Update the bounds for these variables. If at least one of the problems in the procedure is infeasible, go to step New Sequence.

· Inner optimization: Solve P(Yl) to global optimality, or detect that the sequence defined by Yl is suboptimal with the following cycle:

· Exact solution: solve P(Yl) If a feasible solution is found with objective (0 lower than the upper bound (up update (up = (1-() (0. Go to step Local relaxation.

· Local relaxation: Refine the grid the set of linearization points, adding points to the partition K and the linearization set L, in order to tighten the underestimation. Solve the problem LR-P(Yl)K,L to feasibility. If it is feasible, go to step Exact Solution. In other case, go to step New Sequence.

· New Sequence: Add in problem GR-PK,L a cut in the boolean variables to eliminate the current separation sequence from the feasible region. Free the boolean variables Yl. Go to step Outer Optimization.

· Stop: The global optimal solution is (opt = (up/(1-(), and the optimal sequence is given by the solution of the problem P(Yl)  where (opt was obtained.

5. Example

The algorithm was implemented in GAMS (General Algebraic Modeling System, Broke et al. 1997). The GDP problems are solved using its MILP reformulation. CPLEX 9.0 was used for solving the MILP problems and CONOPT 3 for finding improved feasible solutions (locally optimal) of the NLP subproblems. A Pentium 4 PC was used, with a 1.5 GHz processor and 256 KB RAM memory. The optimality parameter is (=0.005.

The example considers an equimolar feed with propane, n-butane, n-pentane, n-hexane; with a flowrate of 100 mol/s. The goal is to separate components with a purity of 99%. 

The GDP model has 3 disjunction, with 3, 4, and 3 terms respectively. The NLP problem for each feasible sequence has 874 constraints and 700 continuous variables. The model GR-PK,L in the first iteration has 10 binary variables, 2403 constraints and 995 continuous variables. 

Table 1 shows the steps of the algorithm in solving this example.

Table 1. Steps of the algorithm for the separation of the four-component feed

	Iter
	Sequence
	Objective value in model GR-PK,L
	Inner iterations
	 Objective value in model P(Yl)

	1
	a/bcd – b/cd – c/d
	73.96
	3
	130.35

	2
	a/bcd – bc/d – b/c 
	98.42
	2
	-

	3 
	ab/cd – a/b – c/d
	98.68
	4
	148.08

	4
	abc/d – a/bc – b/c 
	123.04
	2
	-

	5
	-
	Infeasible
	-
	


The first selected sequence is the direct separation, and this is the optimal sequence. In the second and fourth iterations the algorithm could not obtain a solution of the problem P(Yl), since the local relaxed problems LR-P(Yl)K,L are infeasible in the second inner iteration, showing that the corresponding sequences are suboptimal. 

The total time consumed is 125.3 CPU secs. About 86% of that time is spent in the bound reduction procedure, solving about 670 LP problems.
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Figure 2: Optimal sequence for separation of the four-component feed.

The optimal sequence is sketched in Figure 2. Dotted lines denote zero flows. The sequence is the same reported by Caballero and Grossmann (1999). The flows values obtained are slightly lower than the one obtained by simulation using Hysys, but greater than the ones reported by Caballero and Grossman. This fact confirms that our model predicts lower bounds in flows tighter than the ones obtained with the Caballero and Grossmann´s model. 

6.  Conclusions

An aggregated nonconvex NLP model for distillation columns running at minimum reflux was presented. The model accurately estimates internal liquid and vapor flows, as well as internal temperatures and pinch composition. The model is incorporated in a GDP problem that describes the alternatives of distillation sequences for separating a multicomponent mixture into pure components. The objective function tends the optimization towards the sequence with minimal energetic cost. 

Both models were compared with rigorous simulations and with results from a previous work in the area, showing that the proposed aggregated models are satisfactorily accurate.

The present work also proposes a solution strategy for finding the global optimal solution of the generated model. Example shows the OAGO algorithm is fast and rigorous for problems of small size. For bigger problems it may be crucial for the applicability of the algorithm to take care of implementation issues. The most costly step is the bound contraction procedure. It could be possible to implement this step in parallel, since the numerous subproblems solved are decoupled. 

Moreover, the successive local bounding MILP problems in the inner optimization only differ by the addition of some grid points. A more efficient implementation would consider simultaneously updating the grids and solving the MILP bounding problems. This issue is being studied.
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