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Abstract 
This paper deals with the spatial discretization of distributed parameter systems. The 
originality of the proposed approach is to combine geometrical modelling and finite 
element discretization method to preserve the model structure associated with both mass 
and energy balances during the spatial reduction. The approach is presented through the 
example of an adsorption process. The methodology is described on the microporous 
phase. 
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1. Introduction 
The aim of this paper is to present a method for spatial discretization of distributed 
parameters systems. The originality of this work is the use of  Port Based Modeling 
(PBM) approach for both process modeling and discretization (Karnopp 2000). Let us 
recall that the power of PBM is that interconnection is done in a natural way as soon as 
port variables are chosen as power conjugate variables like in thermodynamics (De 
Groot and Mazur 1984). Moreover, models of systems are manipulated as a set of 
interconnected and reusable sub-models whose basic elements are accumulation 
element, dissipation element and power preserving interconnection structure. 
The structure issued from PBM (see for instance Couenne et al. (2006), Couenne et al. 
(2007) )  is used in order to characterize the energetic behavior of the system and as a 
basis of our discretization mixed finite element method. The final goal of this method is 
by an appropriate choice of power conjugate variables to preserve during the 
discretization stage the energy balances as well as the structural properties of the 
distributed model in terms of energy. In this way the method guarantees the easy 
interconnection of the discretized model (Couenne et al. 2007) and its reusability.  
This preservation of structure is important for control purpose since we now possess a 
reduced model which allows a direct use of the geometric and thermodynamics 
properties of the PDEs model to develop control algorithms. As an example, passivity 
based or energy-shaping techniques can be applied (Ortega et al. 2002) for stabilization 
and regulation purposes on such a model.  
As an example we will treat the case of an adsorption column with bidisperse pellets 
based on Maxwell Stefan formulation of diffusion (Krishna 1990). The column is 
mathematically described by a set of interconnected Partial Differential Equations 
(PDE's). Traditional modeling of such system does not take into account any structure 
of the constitutive equations and the choice of the state variables can lead to numerical 
difficulties, especially during the interconnection of the different levels. The partial 
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model (microporous phase) is presented in Couenne et al. (2005). The complete port 
based model of the column is given in Baaiu et al (2006).  In this paper we focuse to the 
microporous phase modeling and discretization. The modelling and reduction of the 
other phases will be obtained with the same methodology as it will be seen. 

2. Basis of the structured modelling of an adsorption column 
Let first recall all the assumptions we made over the entire column:  
1. We consider an ideal binary mixture constituted of an inert gas and one component 

that can be adsorbed.  
2. The adsorption column is supposed to be at constant temperature and pressure. The 

velocity v of the flowing fluid is also supposed to be constant. 
3. The diffusion onto the surface of the crystal and the diffusion into the macropore 

volume are represented by using the Knudsen/Maxwell-Stefan formulation (Krishna 
1997) . This choice is adequate since flux is expressed thanks to the thermodynamic 
chemical potential. The Langmuir model for the adsorption equilibrium is used. 

4. In the extragranular phase, a dispersion phenomenon is taken into account. It is 
represented with a constant axial dispersion coefficient . D

5. The column is supposed to be cylindrical with constant cross section. The particles 
and the crystals are supposed to be spherical with uniform radius. Spherical 
symmetries are supposed both in the macropore phase and in the adsorbent. 

As mentioned modelling and discretization methods have been applied to the each phase 
of the column. From the assumptions each level leads to a 1D model. Let us now review 
in details the port based model for the microporous scale only. Remarks about the other 
phases will be made along the section. 
2.1. Modelling of the microporous scale 
From a mathematical point of view, we use the framework of differential geometry 
(Flanders 1989) to obtain a coordinate free model of the considered process. In this 
framework  is the exterior derivative (in the general case it is the div or gradient; in 

catesian 1D it reduces to 

d

r∂
∂

 ). The general balance equation for species i is given by: 
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With the concentration , the diffusive molar flux . iq iN Ω  represents the 1D domain 

, ],0[ R R  being the mean radius of the crystals. Since the proposed discretization 
method must preserve the structure associated with both mass and energy balances, the 
choice of the manipulated variables must concern mass and energy. In order to obtain 
the right power conjugate variables, let us write the (Gibbs free) energy density g  
balance: 
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with 
q
g

i ∂
∂

=µ the chemical potential of species i. Applying Stoke’s theorem to 

equation (2), its finally results (Couenne et al. 2005): 
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with standard vectorial notation. { }R,0=Ω∂  and µd corresponds to µ grad . 
Equation (3) expresses the power continuity between internal power variation and the 
power flow at boundaries. Moreover it imposes the choice of the manipulated power 
conjugate variables ( )dN ,µ  and ( )Nd  ,µ . It makes appear the geometric structure 
representative of the infinite dimensional mass balance, 
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 which is with the appropriate boundary pairing ( )
0

Nµ and ( )
R

Nµ a Dirac 
structure (Maschke and van der Schaft 2004).   
The originality of our approach is to use this geometric power conserving structure for 
the modelling of dissipative systems. This is the price to pay to interconnect easily 
systems (Maschke and van der Schaft 2004). To summarize, the aforementioned  power 
preserving structure represents the interconnection between the storage, dissipative and 
boundary parts of the model. It combines two adjoint differential relations, namely the 
generating force as the gradient of the chemical potential and the conservation law (1) 
by the divergence of the flux. Moreover it is the central element of the structured 
modelling of mass transport phenomena. It will appear at each phase of the model. 
This model has to be completed with two closure equations between effort and flux 
variables related with accumulation and dissipation terms. The resulting structured 
model is depicted on Figure1. This model is valid for the microporous level but also for 
the other level. 
The element C  is related to the accumulation and represents the left hand side of 
equation (1).  can be computed from  and  by time integration (this is done 
to homogeneous 

q dN distrF
µ  thank to the local equilibrium thermodynamic condition) and µ  

from  using the thermodynamic constitutive equation (first closure equation).  q
Remark: In the case of the microporous phase, the distributed flow =0. It is not the 

case for the other levels. For example, in the extragranular level,  corresponds to 
the  total flow coming from all the crystals present in the macroporous sub domain. 
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Fig 1: Structured representation of the transport phenomena. 

 
The element R  is related to the dissipation (diffusion or dispersion). The flux is 

computed from the driving force 
dissipN

µd−   using the second phenomenological law.  The 
element D is the power preserving structure described by equation (4). The power 
continuous junctions 0 and 1 express the continuity of flow variables (extensive 
variables) and effort (intensive variables) respectively.  
Remark: It can be seen that in the extragranular phase the convective flux  has be 

added between the elements D  and  R  (
convN

convdissip NNN += ). 

2.2. Interconnection of the level  
The assumption for the interconnection of phases is that the crystal repartition into the 
pellets is uniform as well as the pellet repartition within the column. Furthermore all the 
boundaries of the considered level are at local equilibrium with variables of the upper 
level. Considering spherical symmetry, the crystals have the same chemical potential 
than the pellet. This means that there is an equality of efforts at the boundary. 
Continuity of flux at the boundary of the crystal is also considered. As a consequence, 
the flux coming from all the crystals present in the sub domain can be seen as a 
distributed source of flux for the pellet.  It can be shown that these relations define a 
power continuous coupling between the levels (Couenne et al. 2005). 

3. Model reduction based on geometrical properties 
The proposed discretization method consists in splitting the initial structured infinite 
dimensional model into n finite dimensional sub-models (finite elements) with the same 
energetic behavior. Structure given in  figure 1 is still enforced. 
3.1. Approximation of forms 
For this purpose we consider the local domain ],0[],[ RbaRab ⊂= . The 
approximation method is based on the separation of variables method. The chosen 
approximation bases are different according to the degree of the considered differential 
forms. From the observation of equation (4), µ  and are functions (0-form) since 
they can be evaluated at any point of 

N
Ωwhereas µd and are 1-forms since they 

can be evaluated by integration along 
dN

Ω .  For simplicity let us set 
µµ dd = and . dNNd =

The 1-forms are approximated on  by abR )()(),( rttr abab
dd dµ

ωµµ =  and 
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where the support 0-forms  are chosen such that: 
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This choice is done such that ),(),( tata µµ = and ),(),( tbtb µµ = . For simplicity 

we choose the same support 0-forms  and for aω bω µ  and N and the same support 

1-form for abω dµ and dN . 

3.2. Discretization of the interconnection structure 
The interconnection structure of each submodel is finite dimensional and concerns the 
reduced variables dN  and dµ  and their power conjugate variables µ  and  N . In 
order to have a finite dimensional power preserving structure, the reduced variables 
have to satisfy (Golo et al. 2004): 
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For this purpose, we require that the approximation variables satisfy the relation 
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Equations (7) are obtained from the net power expressed with approximate variables. 
We have 8 variables and 4 equations but two are input variables. So we have to 
characterize two relations consisting in the discretized version of the constitutive 
relations. 
 
3.3. Discretization of the diffusion equation 
The purpose of this section is to compute  from the driving force such that energy 

structure of the element R is preserved: 
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The diffusion represented by Knudsen law can be written as dRT
qDN µ**

−= . For a 

1-form  on 1D domain, it can be written f dr
r
ff
∂
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=  and the Hodge star operator * 
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represents the function
r
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3.4. Discretization of the accumulation 
The principle is the same than for the R element. The purpose is to compute from 

. The approximate energy on  of the C  element is 

abµ

q abR ∫=
abR
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C qG µ& . Let us note that 

the linear concentration lies in the same space than the flow variable q as well as the 

linear saturation concentration appearing in the Langmuir model so the same support 
function can be used. We finally obtain for the discretized chemical potential 
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Using the same procedure, the other level are also discretized. Mainly only constitutive 
relations of accumulation and dissipation are changed. Finally the coupling of the 
different levels is performed. 

4. Conclusion 
In this paper we present a discretization method which preserves both the nature of the 
interconnection structures and the physical properties of the connected elements.  

We apply this method with the simplest support forms dr
ab

ab

−
=

1ω ,  

ab
rba

−
−

=ω  and 
ab
arb

−
−

=ω . Numerical results are presented in (Baaiu 2006). 

This choice of forms leads to a centered method. The quality of numerical results can be 
compared advantageously to those obtained with a left finite difference method.  
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