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Abstract

The development of physical property models is an ongoing challenge in chemical engineering. It usually requires both theoretical insight as well as experiments to test and validate the models. Model-based experimental analysis (MEXA) provides a work process for such developments integrating systems tools and experiments. Optimal experimental design is here a key step. In physical property model development, the choice of the optimal test mixture itself is crucial but usually not systematically addressed. For a rational solution to this problem, recent methods for computer-aided molecular design (CAMD) are integrated into the MEXA work process. Thereby, a targeted and efficient approach for physical property model development is achieved. The approach is exemplified for the prediction of multicomponent diffusion in liquids.
Keywords: optimal experimental design, computer-aided molecular design, model identification
1. Introduction
Modeling in chemical engineering relies on ever better physical property predictions. Ab initio prediction methods are promising but still limited to the simplest cases. Even then, experimental validation is required to test models and methods. In such tests, model-based methods for optimal experimental design (OED) [1] should be employed in order to make best use of experimental resources. OED methods find the best settings for the experimental degrees of freedom for the question of interest. Typically, the degrees of freedom considered are limited to flow rates, temperatures, and the like.
In the development of predictive models for physical properties, model discrimination and validation are critical steps [2]. In this work, a rational framework is proposed to identify the components and mixtures that allow for optimal model discrimination and validation. By selection of the right mixtures to test, a targeted and more efficient approach towards predictive models for physical properties becomes viable. For this purpose, methods from computer-aided molecular design (CAMD) [3] are employed. In CAMD, candidate molecule structures are computer-generated for a specific task. Major applications have been process and product design, in particular solvent selection. Here, it is shown how to integrate CAMD methods into the framework of model-based experimental analysis (MEXA) [4]. Suitable problem formulations are explored and discussed.
As the prediction of kinetic coefficients in mixtures is particularly challenging, the new framework is exemplified for the study of multicomponent diffusion coefficients.
2. Framework
2.1. Physical property modeling

For illustration, the physical property models considered in this work are indirect property models. Here, the desired physical property ( is not directly predicted from molecular structure but correlated via other intermediate physical properties(, i.e.,
( = f( p, T, ((M,p,T), M , (),
(1)

where ( collects constant coefficients and M captures the chosen test substances and the mixture composition. The most prominent example of this model class are mixing rules where a mixture property is predicted from pure component data. Many other physical property models fall also into this class [5]. Below, the Wilke-Chang equation [6] is considered which correlates diffusion to viscosity. Heat transfer correlations etc. are also of the given form.
2.2. MEXA  for physical property model development
For the efficient use of experimental resources, a systematic approach should be followed. Model-based methods can lead to significant reductions of experimental effort. The MEXA work process therefore integrates systems tools into the experimental protocol [4]. The major steps in the procedure are common to all work processes for model-based experimentation (e.g., [2]):
· A mathematical model (or several candidates) is proposed.
· Free variables of the experiment are optimized in model-based experimental design.
· The experiment itself is carried out and measurement data are collected.
· Inverse problems are solved to analyze and interpret the experimental data.
For the problem of physical property model development, this generic work process can be adapted (see Figure 1). While also starting from a priori knowledge and intuition, the developed mathematical model consists of two specific elements in this case: 
· the description of the experiment itself;

· the physical property model candidate(s) to be tested.
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Figure 1: MEXA work process for physical property model development integrating CAMD. 
The experiment has a number of design settings d to be chosen. The physical property model output depends on the fluid(s) chosen, summarized here as mixture M. The mixture M itself is now introduced as a new degree of freedom in OED. This requires adaptation of the tools employed in the experimental design step as outlined next.
2.3. Optimal experimental design
In optimal experimental design, the free variables of the experiment are chosen such that the maximum information with respect to the goal of the investigation can be collected. The two tasks typically encountered in model development are [2]:

· Model discrimination to find the suitable model structure;

· Estimation of parameters in a given model structure.

While the concepts developed here are applicable in both cases, we limit the following discussion to model discrimination (MD). Based on a set of candidate models f (i), the goal is then to find an experiment that allows best to identify the correct model. Here, the criterion suggested by Buzzi-Ferraris and Forzatti [7] is employed
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where y(i) is the measurement predicted by model i and the matrices S are defined by
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The matrix Wm quantifies the prediction uncertainty in y according to the current parameter covariance matrix         .      is the measurement error matrix. The criterion thus places measurements at the conditions where the measurement predictions differ most. Since the objective (2) is related to a t-test, the models are expected to be discriminable if the objective function value exceeds the number of measurements [7].
The considered design variables d usually are temperature, pressure, sampling times, compositions etc. The constituents of the test mixtures have so far not been considered as design variable due to the resulting problem complexity. 
Here, we follow a two step procedure to address this problem. First, optimal intermediate properties ψ are determined in the OED problem by adding them to the list of continuous design variables (cf. Eq. (2)). In step two, the optimized values for these properties are used as targets for a CAMD analysis to identify suitable components. 

2.4. Computer-aided molecular design

Computer-aided molecular design (CAMD) is a systematic tool to find components with desired pure component or mixture properties [3]. CAMD can be interpreted as the inverse of the property prediction problem: Given a set of target properties - obtained here from the optimal experimental design problem (2) – a combination of structural groups is sought that satisfies the property specifications. 
In this case study, the generate-and-test approach is employed. This CAMD approach consists of three basic steps [8]:

· Pre-Design: Define the problem in terms of desired properties of the compound to be designed.

· Design: Run the actual CAMD design algorithm to generate compounds and test them against stated criteria from the pre-design stage.

· Post-Design: Test the results based on properties that are not easily screened during stage two, such as environmental and safety criteria.

For a more detailed discussion, the reader is referred to [8].
Using the extended experimental design problem formulation discussed in Section 2.3, the described CAMD approach thus directly integrates into the MEXA work process (cf. Figure 1). Thereby, the optimal selection of test mixtures can be achieved.
3. Case study: Prediction of multicomponent diffusion
3.1. Problem formulation

The proposed framework is applied to a model discrimination problem for diffusion in liquids. NMR measurements are used to discriminate between five mixing rules that combine binary diffusivities at infinite dilution to predict multicomponent Maxwell-Stefan diffusion coefficients. In light of the previous classification, the problem formulation consists of the following parts:
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Experiment model consisting of: a relation between measured NMR signal intensity and the self-diffusion coefficients as well as intermediate models to relate self- to Maxwell-Stefan (MS) diffusivities and the generalized Vignes correlation for prediction of MS diffusivities. This model needs as input the binary MS diffusion coefficient           between species i,j infinitely diluted in species k. 
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Five candidate physical property models for predicting diffusivity (=          based on available binary data (= {                                      }.
The physical property       is very difficult to measure. Its prediction is therefore the problem of interest. A detailed description of the problem formulation is given in [9].
The goal is to perform experiments in a ternary mixture to discriminate between the physical property model candidates. Each component will be diluted in one experiment, i.e., 3 measurements are taken. For the purpose of illustration, the components Toluene (1) and Cyclohexane (2) have been preselected. The remaining design questions are:
· Which compound should be employed as third component (3)?

· At which composition should be measured? 
While the latter question is classical in OED [10], the first question is difficult to answer directly using standard methods. 
3.2. OED-CAMD solution strategy
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In the proposed approach, intermediate physical properties ( are added to the design variables considered in the OED problem. In the present example, this amounts to the infinite dilution diffusivities with the target compound, i.e., (= {                          }. 
To employ CAMD methods, a group-contribution-based prediction method for ( is required. Here, we employ the Wilke-Chang equation for the diffusion coefficients [6]:


[image: image4.wmf]6

.

0

2

/

1

16

0

)

(

)

(

10

1728

.

1

bi

i

j

j

j

íj

V

T

M

D

q

h

f

-

´

=

,
( MACROBUTTON  AcceptAllChangesInDoc 3 )
[image: image13.wmf]1

®

k

x

ij

D

where (i, (j are correction factors which are assumed to be constant in this work, Mj is the molar weight, (i the viscosity and Vbi the molar volume at the boiling point. The latter two properties are obtained from group-contribution methods in the CAMD step as described below. As the properties M,(, Vb are known for the preselected components (1) and (2), all four intermediate properties (= {                  } are determined once the molar volume Vb3 and the ratio molar weight over viscosity (M31/2/(3) are specified,. In order to optimize the true target properties, Eq. (3) is therefore added to the design problem. The reduced set of additional design variables that need to be considered thus are  (={( M31/2/(3), Vb3}.
3.2.1. Molecular target from OED

The optimal experimental design problem (2) for discrimination between the five model candidates is solved with the design variables mixture composition and (={( M31/2/(3), Vb3}. Figure 2 shows the objective as a function of the free intermediate physical properties (. It can be seen that the molar volume has a minor influence on the model discrimination capacity. For the ratio (M31/2/(3), high values lead to major improvements. The model discrimination problem therefore yields the CAMD target of finding a component that maximizes this ratio.
[image: image5.png]



Figure 2: Model discrimination objective in physically relevant range of CAMD target properties.
3.2.2. CAMD solution
In the pre-design step, the desired and the undesired properties of the new molecules are specified as targets for the generation algorithm. In the present case, the target value is a high ratio between the square root of the molecular weight and the liquid viscosity (Section 3.2.1). Other constraints are the boiling temperature above 50°C, a restriction to non-aromatic hydrocarbons that may contain oxygen and a limitation of molecule size to 6 functional groups. All these constraints can be specified in ICAS [8], a software package that can readily be used for CAMD applications. Given the targets from the pre-design phase, feasible molecules are generated in the design step. The algorithm solves a number of sub-problems of increasing complexity [8]. 

In the post-design phase, the generated alternatives are ranked and tested. Here, we require that only alternatives included in the DIPPR database are analyzed further.
3.3. Results and Discussion
In Table 1, the results of the CAMD algorithm of ICAS are shown. The three top-ranked molecules after the post-design step, their predicted physical properties and the final model discrimination (MD) objective are given.
Table 1: Results of the CAMD algorithm Generate-and-Test (ICAS ProCAMD) 
	Component name
	M (g/mol)
	η (cP)
	Vm (cm³/mol)
	MD objective

	3-methyl-cyclopentene
	82.14
	0.27
	119.57
	129.14

	methyl-cyclopentane
	84.16
	0.41
	120.69
	46.0

	cyclohexene 
	82.14
	0.54
	108.04
	21.9


All suggested molecules are expected to allow for model discrimination as the objective exceeds the number of measurements. In addition, the results of the combined MEXA-CAMD approach clearly show that the optimal choice of the chemical component has a strong impact on the ability to discriminate between different diffusion models. Objective function values for the top-ranked molecules already range from 21.9 for cyclohexene up to 129.14 for 3-methyl-cyclopentene. As the objective scales with the number of experiments, 6 times more experiments would be required to obtain the same confidence in model discrimination in case cyclohexene is used as compared to 3-methyl-cyclopentene. Without a model-based selection strategy, even poorer candidates might have been chosen. Consequently, the use of a systematic selection of a test mixture by the suggested MEXA-CAMD approach seems mandatory to save time and experimental expenses.
4. Conclusions
In this work, a novel experimental design approach for the optimal choice of a test mixture to enhance the ability to discriminate between competing physical property models is presented. In a two-step procedure, first characteristic optimal intermediate properties are determined as continuous design variables by model-based experimental design.  In step two, these are defined as target properties for a CAMD analysis to get suitable mixtures. 
The significant potential of this approach is exemplified in the case study. Through the optimal choice of the test mixture the experimental effort can be reduced by orders of magnitude. As the proposed method extends beyond the considered problem class, the systematic selection of test mixtures should now be added to the list of design variables in model-based experimental analysis. 
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