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Abstract

Prediction of normal melting temperature (Tm) using linear Quantitative Structure Property Relationships (QSPR) whose applicability domain is limited to a particular homologous series is considered. It is shown that by limiting the applicability domain of the QSPR and using a very large bank of descriptors it is possible to identify a small set of descriptors whose linear combination represents Tm within experimental error level, even if the change of  Tm  with the number of C atoms is highly irregular. Confidence in the predicted values in both interpolation and extrapolation is considerably enhanced by ensuring random residual distribution in the training set used. The proposed method yielded prediction errors lower than reported in the literature in all the homologous series that were included in this study. 
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1. Introduction

Normal melting temperature (Tm) is an important property for assessing the environmental impact of compounds as it indicates the physical state of the chemical at ambient temperatures, thus dictates how the chemical is handled and treated. Furthermore, it is widely used in quantitative structure-activity relationships (QSARs) for predicting toxicity and aqueous solubility.
Methods for the prediction of physical properties of pure compounds based on their molecular structure are challenged by the prediction of solid properties, Tm in particular. This is due to the numerous factors that affect the solid state properties, but have much less (or no) effect on the liquid or gas phase properties. These factors include ionic, polar and hydrogen bonding forces, crystal packing, and positional, expansional, rotational and comformational entropy effects (Dearden, 2003).  Consequently, property prediction techniques are significantly less reliable when applied to solid properties compared to their reliability in predicting liquid and gas phase properties (Godavarthy et al., 2006, Dearden, 2003).

We have tested the hypothesis that the prediction of Tm can be improved by the use of Quantitative Structure Property Relationships (QSPR) for which the applicability domain is limited to "similar" compounds. To this aim, compounds belonging to a particular homologous series were selected as applicability domain for the QSPR. A QSPR whose applicability domain is limited to a particular series is denoted HS-QSPR. 

To carry out the studies described in this paper, a molecular descriptor database for homologous series of hydrocarbons (n-alkane, 1-alkene and alkyl-benzene) and oxygen containing organic compounds (aliphatic-alcohol and alkanoic monocarboxylic acid) have been prepared. The Dragon program (version 5.4, DRAGON is copyrighted by TALETE srl, http://www.talete.mi.it) was used to calculate 1280 descriptors for the compounds in the database. Melting point data were taken from the DIPPR (Rowley et al., 2006) database.  A modified version of the stepwise regression program (SROV) of Shacham and Brauner (2003) was used for the identification of the most appropriate QSPRs.  
2. The HS-QSPR method

For development of the QSPR the members of the homologous series are divided into a training set which includes only compounds for which Tm data are available and an evaluation set in which Tm data are available only for part of the compounds. Shacham et al., (2007) have shown that using ten compounds is sufficient as a training set. For predicting Tm for the members of the homologous series, a linear structure-property relation is assumed of the form:

[image: image1.wmf]ε

ζ

ζ

ζ

y

+

+

+

+

=

m

m

b

b

b

b

K

2

2

1

1

0


(1)
where y is a p-dimensional vector of the respective property (known, measured) values (p is the number of compounds included in the training set), ζ1, ζ2 … ζm  are m p-dimensional vectors of predictive molecular descriptors,   are the corresponding model parameters to be estimated, and ε is a p-dimensional vector of stochastic terms (due to measurement errors). 
The descriptors are selected to the model in a stepwise manner according to the value of the partial correlation coefficient, |(yj|   between the vector of the property values y, and that of a potential predictive descriptor ζj.  The partial correlation coefficient is defined as 
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 are row vectors, centered (by subtracting the mean) and normalized to a unit length|(yj|.  Values close to one indicate high correlation between molecular descriptor and the property value. The training set average percent error can be used for estimating the expected prediction error. It is defined as:
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Addition of new descriptors to the model may continue as long as the calculated average error is greater than the pre-specified error tolerance (εa > εg ) and the signal-to-nose indicators of the SROV program are not violated. The stepwise regression program SROV (Shacham and Brauner, 2003) is used, which selects in each step one molecular descriptor that reduces the prediction error most strongly.
Tm values for the members of the evaluation set are estimated by:
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where 
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  is the estimated (unknown) property value of the respective compound and ζt1, ζt2 … ζtm are its corresponding molecular descriptors values.
3. Predicting Tm for the alkanoic, monocarboxylic acid series.
The first 19 members of the alkanoic, monocarboxylic series (shown in Table 1) were included in this study. Experimental Tm values (shown in Table 1 and Figure 1) are available for all of them in the DIPPR database. The estimated experimental error (reliability) of the data is < 1%. 
Table 1. Reference data and results for predicting Tm of alkanoic, monocarboxylic acids
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HS - QSPR

Acid atoms Experimental  Prediction % error PJI2 IVDE  EEig06x Mor16v

Methanoic

2

1 281.55 281.67 0.04 1 0.918 0 0.016

Ethanoic

2 289.81 289.94 0.04 1 0.811 0 -0.015

Propanoic

3 252.45 251.08 0.54 0.5 1.371 0 -0.073

Butanoic

4 267.95 267.73 0.08 1 1.459 0 -0.056

Pentanoic

5 239.15 238.59 0.24 0.667 1.449 -0.754 -0.066

Hexanoic

6 269.25 269.35 0.04 1 1.406 -0.255 -0.095

Heptanoic

7 265.83 269.84 1.51 0.75 1.352 0.217 -0.091

Octanoic

8 289.65 288.66 0.34 1 1.295 0.425 -0.098

Nonanoic

9 285.55 284.91 0.22 0.8 1.241 0.571 -0.097

Decanoic

10 304.75 304.18 0.19 1 1.189 0.853 -0.115

undecanoic 11 301.63 302.43 0.26 0.833 1.14 1.138 -0.096

dodecanoic 12 316.98 316.20 0.25 1 1.095 1.382 -0.09

tridecanoic 13 315.01 316.13 0.35 0.857 1.053 1.588 -0.092

tetradecanoic 14 327.37 326.82 0.17 1 1.014 1.76 -0.084

pentadecanoic 15 325.68 325.02 0.20 0.875 0.978 1.904 -0.078

hexadecanoic 16 335.66 333.30 0.70 1 0.944 2.027 -0.067

heptadecanoic 17 334.25 333.49 0.23 0.889 0.913 2.13 -0.081

octadecanoic 18 342.75 341.80 0.28 1 0.884 2.219 -0.083

eicosanoic 19 348.23 348.69 0.13 1 0.832 2.362 -0.097

1

Data from the DIPPR database

2

Members of the training set are shown in bold letters
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Figure 1. Experimental Tm values of alkanoic, monocarboxylic acids 
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Figure 2. Descriptor values vs. the number of C atoms for the alkanoic acids.

Observe that the behavior of Tm  versus nC is very irregular. For low carbon numbers the general trend is decrease of Tm  with the increasing nC. Starting at nC = 6 the trend is reversed. However, in addition to the general trend there are also oscillatory changes between neighboring compounds. It is rather difficult to model such an irregular behavior.  
To identify the molecular descriptors that should be included in the regression model all 18 out of the 19 compounds shown in Table 1 were included in the training set. The SROV program has identified the descriptor EEig06x as having the highest correlation with Tm (|(yj| = 0.967). EEig06x is a two dimensional (2D) descriptor belonging to the category of "edge adjacency indices", described by Dragon as "eigenvalue 06 from edge adjacency matrix weighted by edge degrees". In Figure 2 several descriptors are plotted versus nC. Observe that EEig06x represents well the general trend of the Tm curve, but not the oscillations. It is important to point out that there are several additional descriptors which are highly correlated with Tm however their (|(yj| values are slightly lower than that of EEig06x. One of these descriptors, for example, is SIC3 which is also a 2D descriptor belonging to the "information indices" category ("structural information content (neighborhood symmetry of 3-order)" for which  |(yj| = 0.965. Thus, from among the 1280 descriptors several combinations can possibly be found, which yield predictions of Tm  of a similar precision. 

The next descriptor to enter the QSPR is PJI2 ("2D Petitjean shape index" from the "information indices" category) with |(yj| = 0.965. Observing the behavior of this descriptor in Figure 2 reveals that this descriptor represents only the oscillations. The combination of these two descriptors provides very precise representation of Tm for most compounds involved (prediction error < 1%) except for ethanoic-acid and butanoic -acid for which the prediction error is ~ 4%.  Two additional descriptors have to be added to the QSPR in order to reduce the error in the representation of Tm for these two compounds. 
To validate the extrapolation capabilities of the QSPR for predicting Tm of the alcanoic acid series, the parameters of the QSPR are derived using a training set of 10 compounds which are identified in Table 1. The HS-QSPR obtained is Tm = 277.32 + 44.84 PJI2 - 41.98 IVDE + 21.02 EEig06x -121.81 Mor16v. The prediction errors when using this QSPR are below experimental error level (< 1%, see Table 1) in all except one case (for heptanoic acid the error is 1.51 %). The mean absolute error is 0.9 K. Dearden (2003) provides a summary of the prediction errors reported in connection to using various QSPRs for predicting melting points of various groups of compounds. Average errors are reported in the range of 8.1 K through 47.8 K. Thus, the precision of the HS-QSPR is considerably higher than that of the other QSPRs reviewed by Dearden (2003). 

4. Predicting Tm for the 1-alkene series.

Twenty seven members of the 1-alkene containing between 4 to 30 carbon atoms were included in this study (Table 2). For the first 17 compound Tm values (either measured or predicted) are available in the DIPPR database with reliability ranging between 0.2 % and 1.0. All the compounds for which the data are marked as experimental(except 1-heptene, 9 compounds) were included in the training set. The first descriptor to enter the QSPR was TIC5 (a 2D descriptor belonging to the "information indices" category: "total information content index, neighborhood symmetry of 5-order" ) with |(yj| = 0.99985. The meaning of such a high value of the correlation coefficient can be understood in reference to Figure 3. In this Figure the reported Tm values as well as the descriptor values are plotted versus nC, for the 1-alkene series. Observe that, for this series, there is a smooth, monotonic increase of Tm with increasing nC. Furthermore, the descriptor TIC5 is almost completely collinear with Tm. This can be verified by plotting Tm versus TIC5 (Figure 4) which yields an almost perfect straight line. The one descriptor QSPR: Tm =  75.4013+1.0267TIC5 yields predictions with error smaller than 1% for most of the compounds, however there are excessive error values for 1-pentene (4.7%) and 1-nonene (2.0%). An even more serious deficiency of this model can be detected by inspecting its residual plot (not shown). The residuals of the one descriptor model exhibit a definite curvature, with a decreasing trend at high carbon numbers. 
Consequently, there is a consistent increase in the error starting from Tm = 184.4 K. If this model is to be used for extrapolation (as required, according the data available in Table 2) we can expect the prediction error to grow even further. The three descriptor HS-QSPR reads: Tm=106.47+0.7336TIC5+42.83BELp5-57.96L2p.
Its prediction errors are within experimental error level (Table 2). Furthermore, it provides residual plot (not shown) with randomly distributed residuals which indicates that the model is safer for extrapolation than the one descriptor model. 

Table 2. Reference data and results for predicting Tm of 1-alkenes
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TIC5

BELp5

L2p

1-butene

4

87.8

87.78

0.03

11.651

0

0.47

1-pentene

5

108.016

109.31

1.19

36.697

0.094

0.485

1-hexene

6

133.39

133.78

0.29

57.651

0.343

0.512

1-heptene

7

154.12

154.07

0.03

75.268

0.511

0.509

1-octene

8

171.45

172.34

0.52

93.284

0.675

0.543

1-nonene

9

191.91

190.97

0.49

109.627

0.822

0.537

1-decene

10

206.9

207.36

0.22

126.452

0.949

0.561

1-undecene

11

223.99

224.94

0.42

143.71

1.057

0.556

1-dodecene

12

237.95

237.96

0.01

157.362

1.149

0.572

1-tridecene

13

250.08

250.75

0.27

169.866

1.228

0.568

1-tetradecene

14

260.3

260.15

0.06

179.722

1.295

0.58

1-pentadecene

15

269.42

269.24

0.07

188.404

1.353

0.576

1-hexadecene

16

277.51

276.65

0.31

196.304

1.403

0.585

1-heptadecene

17

284.4

284.04

0.13

203.626

1.446

0.582

1-oktadecene

18

290.76

290.35

0.14

210.499

1.485

0.589

1-nonadecene

19

296.55

296.65

0.03

217.01

1.518

0.587

1-eicosene

20

301.76

302.15

0.13

223.22

1.548

0.593

1-heneicosene

21

-

307.74

-

229.177

1.574

0.591

1-docosene

22

-

312.65

-

234.917

1.597

0.596

1-tricosene

23

-

317.74

-

240.468

1.618

0.594

1-tetracosene

24

-

322.29

-

245.854

1.636

0.597

1-pentacosene

25

-

326.92

-

251.094

1.653

0.596

1-hexacosene

26

-

331.13

-

256.204

1.668

0.599

1-heptacosene

27

-

335.45

-

261.196

1.682

0.598

1-octacosene

28

-

339.38

-

266.083

1.694

0.601

1-nonacosene

29

-

343.46

-

270.873

1.706

0.6

1-triacontene

30

-

347.23

-

275.576

1.716

0.602

1

Data from the DIPPR database
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5. Conclusions

Prediction of the normal melting temperatures of alkanoic acids has demonstrated that by limiting the range of applicability of the QSPR to a particular homologous series and using a very large bank of descriptors it is possible to identify a small set of descriptors whose linear combination represents Tm within experimental error level, even if the change of Tm with the number of C atoms is highly irregular. 
In cases when the change of Tm with the number of C atoms is smooth and monotonic an HS-QSPR containing only one descriptor can provide prediction of acceptable precision if interpolation is involved (as shown in the example of 1-alkenes). However, if the available data dictate prediction by extrapolation addition of more descriptors, until reaching random residual distribution, can provide some confidence in the predicted values.
A more extensive discussion on the advantages of the proposed method over other property prediction methods (such as the ones using PCA or neural networks) can be found in Kahrs et al (2007). Results of applying the proposed method for additional homologous series and comparison of the accuracy of the predicted Tm with other methods are presented in Brauner et al. (2008).
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Figure 3. Reported Tm and descriptor TIC5 values of 1-alkenes
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Figure 4. Reported Tm values versus descriptor TIC5 of 1-alkenes

_1242738928.unknown

_1262689323.unknown

_1262767570.unknown

_1242738935.unknown

_1223811445.unknown

_1234686757.unknown

_1223811431.unknown

