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Abstract

Models should match the application. If one models too finely, one can adjust by making order-of-magnitude assumptions with respect to what is fast and what is slow. For first-principle models one has three fundamental choices: small and large capacities, fast and slow transfers of extensive quantity and fast and slow reactions or transpositions. All three cases are discussed systematically and consequent index problems are eliminated by applying the model reduction that evolves naturally from the formalisation of applying the assumptions.
Keywords: modelling, model reduction, model simplification
1. Background
Modelling is central to most chemical engineering activities associated with design and operations on all levels. Models come in different flavours ranging from black box to white box and from microscopic to large scale. One thing models have in common: they are designed and constructed to serve a particular purpose. Models must thus “match” the purpose and the modeller must keep in mind for what the model is going to be used. Models may also be adjusted to match the need by either refining or simplifying an existing model. What is being done depends on whether the model is over or under modelling the process for the purpose the model is intended for. 

The subject of this paper is to formalise a set of modelling reduction techniques applicable to mechanistic models. Literature knows a number of modelling simplification and reduction techniques. The ones being discussed here are all associated with order-of-magnitude assumptions, their formalisation and the achievable simplification of existing mechanistic process models. Three basic time-scale related assumptions are being analyzed in details, namely (i) negligible capacities, (ii) fast transfer, (iii) fast reactions.

Whilst the first one is a standard singular perturbation problem, the other two are not; they need a little bit more massaging. More importantly, though, they result in a condition for equilibrium, which in principle is well known, but which also seems to get forgotten often, when establishing a models.

2. Network Models

Our network models build on a control-volume approach in that the spatial domain occupied by the plant to be modelled is subdivided into a set of interacting volumes. Such volumes are often referred to as control volumes, because the model for these volumes is constructed by drawing up the relevant balances of extensive quantities, which reflect the conservation of the respective extensive quantities. Our foundation has been described earlier [1,3]. Similar work was reported in [2]. Such models can be represented as a directed graph with the vertices representing the capacities, one for each control volume, and the arcs the communication paths of extensive quantities with the direction defining a reference co-ordinate system for each transfer.
This can be mapped into a set of equations, which are of the form
, 
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, where x is the state of the network being a stack of state vectors one for each individual primitive systems consisting of the conserved extensive quantities of the system. F,S are the flow direction matrix and the stoichiometric matrix, respectively. The vector 
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 represents the stack of flow vectors of the respective extensive quantities and the vector 
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 a stack of the transposition (reaction) vectors of the respective quantities. The latter is usually representing reactions, which is a transposition of component mass. Thus the use of the term stoichiometric matrix for S. The flow direction matrix has matching pairs of block entries with the block pairs being a positive and a negative identity of the same dimension as the state assuming that the transport vector has the same dimension as the state vector. The plus and minus signs represent the direction information in the graph: what disappears in one system appears in the other. This dimension assumption is readily removed by the introduction of selection matrices, which for the discussion here is not relevant and therefore omitted.
On properties: Summing the states eliminates the stream matrix. Similarly for the stoichiometric matrix:  adding all states together removes the stoichiometric matrix. Representing the “summing” operation as a scalar product of the state with a vector of ones the result is that 
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, reflecting the fundamental property of the conservation laws. 
This model is being augmented with the representation of the transfer quantities and the transpositions. The transfers are in general a function of the driving forces, which in turn are the derivatives of the (internal) energy with respect to the transported quantity. Thus for convective mass transfer, transferring mass and volume, the driving force is the pressure. For the diffusional mass transfer it is the chemical potential and for the conductive heat transfer it is the temperature, to mention the main ones. If we denote these special variables
 as 
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 the transfer laws may be abstracted into 
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, which is a simplified gradient representation of the transfer from system a to system b. The reader should note that the functional form may be different, though the driving force is always the difference in the variables conjugate to the potential. For the transposition we shall write generically 
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, with y being a vector of secondary state variables, such as concentration. The term “secondary state variables” is used for variables that are obtained through a transformation from the state variables defined in the conservation equations, which we term “fundamental state variables”. The secondary states MUST be the result of a mapping from the state space spanned by the fundamental state variables [2].

2.1. Alternative State-Space

Literature usually transforms the above equations into an alternative space spanned by a mix of fundamental and secondary state variables. A very common transformation is to map the component masses, into the composition space and the enthalpy into the temperature this set being augmented with an extensive variable, mostly volume. This choice is usually done on the background that one is interested in the composition and not in the absolute mass content of a capacity and that one has usually some information about the volume. Also it is quite often the case that assumptions can be made in connection to the volume, such as constant density and constant volume. Both are significant, when talking about model simplification and model reduction (see also 3.5 below).
3. Order-of-magnitude assumptions

3.1. Assumption 1: Small and large capacities

If one deals with a combination of small and large capacities, one may want to assume that the small capacities are negligible when coupled with large capacities the model being analysed in the time scale where the larger capacities show a dynamic behaviour. Examples are sensors in a fluid, such as a temperature sensor or small fluid capacities that are well mixed, have a constant volume and are interacting with large capacities. Latter may be describing a living cell in a nutrition solution or a dead volume in a tank, or a solid adsorbing material temporarily, etc. It is essential though that the small capacities are identifiable and representable quantities and are essentially constant. 
For the implementation of this assumption we first split the network model into two parts, a fast and a slow part by introducing a respective selection matrix P: the slow part 
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   and the fast part  
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   with the graphs   Fs, Ff, Ffs= -Fsf   being the direction matrices for the slow internal streams, the fast internal streams and the streams coupling the fast and the slow parts. 
Next the fast network is being transformed by “norming” the conserved state with a capacity measure that is constant or at least nearly constant, for example volume. Let 
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be a generic extensive quantity and define an intensity 
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 such that it is dynamically invariant, for example constant volume, the fast part takes the form: 
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. With the capacity measure 
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 being small compared to the slow ones, standard singular perturbation can be applied. Thus 
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. The internal flows in the fast system are usually also fast, a subject that will be further discussed below. Often are they also non-existent, thus zero. Combining the fast and the slow system is achieved by simply adding the two together whereby the transfers between the two parts are eliminated. The result is thus: 
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whereby we assumed the fast, internal flows are zero for simplicity.
3.2. Assumption 2: Fast and slow transfer

In the case where one has large differences in the transfer rates, one may decide to assume the fast transfer rates to be very fast and essentially not known as they match forcing an equilibrium between the connected systems. 
Demonstrating the case, we choose a network in which a system is connected to the rest of the world through a fast connection. Let this systems’ conservation be  
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, where 
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 is the fast transfer. Further let us define the fast transfer as 
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 with the transfer parameter 
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being large. 
Scaling the conservation equation with the transfer parameter yields:
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. This is then nearly a standard singularly perturbed system:           
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 = 0.                Thus the driving force goes to zero and 
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with a, b being the identifier of the two connected system. Making the assumption removes the need to formulate the transfer system, as its representation is eliminated from the model. However, one requires the two measures for the driving force in both systems and one uses the fact that the driving force is a function of the difference in the conjugate variables. Their equivalence expresses the equilibrium relation for the respective quantity, which may be used to reconstruct the lost state variables of the two system. Thus if the transfer is a heat transfer, the two temperatures in the connected systems are the same. Similarly for diffusional mass transfer  it yields an equivalence in the chemical potential, thus a chemical equilibrium and in the case of convective mass transfer, it is the pressure that is equal.
Now applying it to a network, we split the network into two parts with them being connected through the fast transfers only:   
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.  The fast flows are readily eliminated by multiplying the equation from the left with a matrix such that this matrix times the fast graph matrix are zero – thus  a simple null-space calculation is required:
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such that 
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= 0. 
Considering the structure of the graph matrix, it is easy to see that this operation is adding the two systems together that are coupled by a fast connection. Thus finding the matrix 
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 is just a bookkeeping exercise. The resulting model though still contains the state variables that are seemingly eliminated by the summing operation. They  are present in the equilibrium relations, which are to be constructed from the respective equations of state. These relations then serve the purpose of reconstructing the state of the systems being summed thereby introducing their state as being the sum of the original states of the summed up systems. This simplification makes thus direct use of the linearity of the conservation principles or the Euler-1 property or the superposition property, all being the same.
3.3. Assumption 3: Fast and slow transposition

The arguments for handling this case are similar to the previous case. Only that the transport parameter is replaced by the reaction parameter “reaction constant”, which is not really constant but a strong function of the temperature. The main difference to the transport case is though, that the transposition is occurring within a system and not between two systems. Thus it is sufficient to study a single system for this case. 
Let its  conservation be 
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and the transposition be described by pairs of reactions, one forward, one backward. Equilibrium is approached when the forward reaction is equal to the backward reaction with both reaction constants being large. This result is readily obtained by scaling the conservation with one of the two reaction constants and applying the singular perturbation argument analogue to the argument used for the fast transfer.  
For a pair of forward, backward reactions, the S matrix takes the form of a vector of the stoichiometric coefficients, thus 
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, where the function 
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 reflects the dependency of the transposition on the state. In the case of chemical reactions, this function is usually a power function of the involved species’ concentration with the respective stoichiometric coefficient as a power coefficient. An extensive quantity usually enters because the transposition rate is normed by this extensive quantity, often the volume. The matrix K namely the negative of the forward “reaction constant” and the positive for the back reaction. For a given species, one thus gets expressions of the type 
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with i being the species index, f  for forward and b for backward. The conservation for a species is then of the form 
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. Scaling the equation with one of the two large reaction constants gives 
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. Thus taking the limit and observing that the two reaction constant are of the same order of magnitude one finds:
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Consequently 
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 assuming that the stoichiometric coefficient is not equal to zero. With y usually being the composition, this reaction-equilibrium equation provides an algebraic link between the concentration of the species involved in the reaction. The rate adjusts to the equilibrium condition, thus is not known and eliminated from the conservation equation through a null-space calculation: Given the conservation for a system, one splits the reactions into a set of fast and a set of slow reactions: 
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. In order to eliminate the fast reactions one multiplies with a matrix 
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with 
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such that 
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= 0. The reader should notice that this elimination operation, whilst similar, is different to the elimination of flows in that the result is a linear combination of species masses in the affected system, whilst for the flow elimination, the species mass of the two connected systems are added. The fast reaction assumption does not affect the hydraulics of the process, but forms invariant species groups. A good example for such a system is a acid-alkali reaction, which are very fast compared to many other types of reactions [3]. 
3.4. Assumptions on assemblies

It is not uncommon that one has knowledge about a state-dependent quantity of an assembly of primitive systems and thus stimulates making and implementing an assumption. A well-known example is the assumption of constant, known volume of multiphase systems enclosed in a common confinement.
Given the standard model as above, one can split the network into two subsection thereby isolating the part for which the assumption shall be made. Let matrix PA be a selection matrix that is non-square and isolates the part for which an assumption shall be made. Further let Ω be a matrix of the dimension k x n , then it a typical assembly assumption is 
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= 0, that is a linear combination of the states is constant. This then defines k algebraic constrains providing equations for k dependent algebraic variables. The above equations may be used to determine a set of dependent quantities. Bi-partite graph analysis can here help to determine the set of possible quantities that can be determined in a specific case. Further, the above equations can be added to the other part thereby eliminating the connecting streams, but providing the opportunity to possibly compute quantities that depend on the algebraic constraints. 
3.5. Assumptions on secondary states

The network models, being formulated in the space of the conserved quantities, which we term the primary state space, can be transformed into secondary state space by means of state variable transformations. In fact in chemical engineering models in the secondary states are more common than in the primary, because substituting as early as possible is considered a good mathematical praxis. Thus one usually does not use the models in the primary state space, which is also a minimal space. The approach discussed here represents therefore a deviation from the standard chemical engineering practice. 

The transformation can be formalized readily: Let  
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  be a network model representing the plant in the primary state space. The transport and the transposition term is condensed to 
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 where the vector y represents the assembly of secondary states. These secondary states are the result of a transformation from the primary space 
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. For simplicity it is assumed that the transformation is explicit in the secondary state variables, which often it is not. Whilst there may be explicit relations, they must be invertible, as the fundamental space is the basis of the science framework. For example, with temperature being a frequently used secondary variable, for anything than a simple representation of the energy, one ends up with an implicit equation for the temperature that needs to be solved. 
Implementing the explicit transformation then gives 
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. This may be condensed into  
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. From this point on one can implement the same assumptions as they were discussed above. Very common is the assumption of constant volume for single systems or assemblies (see section 3.4).
4. Examples
Examples can be found in the cited literature [4] : fast reaction, [5]: long time scale distillation. See also [3] and other places. Whilst not formalised, these assumptions are made very commonly as part of the modelling process without special mentioning. 
5. Conclusions

A number of common order-of-magnitude assumptions can be handled in the framework of (singular) perturbation. Specifically small/large capacities, slow/fast transfers and slow/fast reactions. In each case the simplification is the result of assuming event dynamics for the fast part. Some minor massaging of the equations is necessary to bring the equations into a treatable form. In all cases, the index of the DAE is not affected as the state space can be appropriately reduced.

The treatment is formal thus also suitable for implementation in a computer-aided modelling tool, as this group has been active in for some years. 
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� Representing physical-chemical-biological systems, the representation is slightly richer, as the extensive quantities are typed and thus the graph is coloured by types, which reflects into the equation by adding a type to the flows and the network matrices.


� These quantities are not the potentials as they are often wrongly labeled, but they are the conjugate variables to the potentials.
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