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Abstract

A reduced mathematical differential model based on the secondary and primary particle method to predict the steady and dynamic behaviours of hydrodynamics and mass transfer in liquid-liquid extraction column (RDC type) is developed. The reduced model consists of five coupled nonlinear partial differential equations that are dominated by convection with nonlinear source terms. For this reason, special discretization techniques based on the finite volume method are utilized. The unsteady state analysis reveals the fact that the largest time constant is due to the solute concentration in both phases. On the contrary, the response of the dispersed phase mean properties is very fast when compared to the solute concentration one. Additionally, the solute concentration response in both phases shows a highly nonlinear behaviour due to step changes in the input variables. 
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1. Introduction
Dynamic simulation of Liquid-liquid extraction columns (LLEC) is now wide spread. Unfortunately, the dynamics and control of these units could be problematic; partially due to their multiphase nature, and partially due to the difficulty of online measurements of important output variables. The understanding of this dynamic behavior can be notably used in the design of process control strategy or the start-up and shutdown procedures [5,11]. Attempts to model the dynamic behavior of extraction columns are foundered because of the discrete nature of the dispersed phase. The natural frame work of taking this into account is the population balance approach [2]. However, due to the mathematical complexity of the resulting model it is not feasible to use it for dynamic and online control purpose where short computational time is needed. To reduce the complexity of these models without loosing the dynamic information, it is obvious that a suitable reduction technique is needed. Accordingly, the concept of the primary and secondary particle method (PSPM) [1] is utilized to reduce the bivariate population balance model to a self contained dynamic model with one primary and two secondary particles. The secondary particles could be envisaged as a fluid particles carrying information about the distribution as it is evolved in space and time. This information reflects the particle - particle interactions (breakage and coalescence) and transport (convection and diffusion). On the other hand, primary particles carry the mean properties of the population such as total droplet concentration; mean droplet diameter dispersed phase hold up and so on.  So, the main objective of this work is to develop a reduced mathematical model capable of describing the dynamic behavior of a Rotating Disk Contactor (RDC) using a differential model.Accordingly, the state of any droplet is represented by a bivariate (joint) density function 
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 accounting for the number of droplets having sizes and concentrations in the ranges 
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 per unit volume of the contactor. This allows the discontinuous macroscopic (breakage and coalescence) and the continuous microscopic (interphase mass transfer) events to be coupled in a single spatially distributed population balance equation (SDPBE). 

2. The population balance model

The general SDPBE for describing the coupled hydrodynamics and mass transfer in LLECs in a one spatial domain could be written as:
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In this equation the components of the vector 
[image: image4.wmf][   ]

y

dczt

y

=

are those for the droplet internal coordinates (diameter and solute concentration), the external coordinate is
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 and 
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 is time. The velocity vector along the internal coordinates is given by 
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.  The source term
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 represents the net number of droplets produced by breakage and coalescence per unit volume and unit time in the coordinates range
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. Note that the dispersed phase velocity, 
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, relative to the walls of the column is determined in terms of the slip (
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) velocity with respect to the continuous phase [3]. 
3. The primary and secondary particle concept

In the finite difference methods the particle size is discretized into a finite number of sections (
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), where the population in each section is considered to behave like a single particle. In the PSPM framework of discretization, this single particle will be called the primary particle and it will be responsible for the reconstruction of the distribution. The interaction between the primary particles in different sections, due to breakage and coalescence events, results in a new primary particle with no representative size due to the discrete approximation of the distribution. Because the newly-birthed particle could not conserve any of its low order moments but one, the rest of the low-order moments are predicted with low accuracy and hence the associated integral quantities. To overcome this fundamental problem of the sectional methods, 
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 secondary particles in the PSPM are generated in each section (
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) with positions (
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The secondary particles are exactly equivalent to the number of quadrature points in Gauss-like quadratures or the QMOM [7]. Accordingly, each secondary particle could conserve or reproduce two low-order moments and in general 
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 moments in each section. The way in which the PSPM works is started by envisaging the dispersed phase as contiguous 
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 primary particles. Each primary is associated with the desired number of secondary particles which carry detailed information about the distribution. The active particle mechanisms such as breakage and coalescence occur through interactions between the secondary particles. It is obvious now that 
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 particles are contributing in the breakage and coalescence events. Due to the increase of the number of interacting particles, more information is gathered about the distribution itself. This distribution could be reconstructed from the secondary particles by averaging the total weights of the secondary particles with respect to the smallest domain containing these particles associated with the ith primary particle and locating them at the mean size of the secondary particles.  In pure mathematical sense, the above presentation is equivalent to applying the QMOM to each size partition of an arbitrary width: 
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 resulting in a set of low order moments:
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, where the details of this approach are found in [1]. 
4. The one-primary two-secondary particle model (OPTSPM)

This reduction technique retains the whole information furnished by the number concentration function and averages out the solute concentration coordinate without any simplifying assumptions regarding the form of the bivariate density function.  For the general case, the secondary particles (associated with any primary particle of mean position located at 
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).  Using this idea, any mean (integral) property associated with a given primary particle (
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) could be written mathematically as:
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The above equation is said to be unclosed if the bivariate density inside the integral is not know in advance. Fortunately, using two-equal weight secondary particles leads to the following closure equation [1].    
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Where 
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is the 
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are the fractional length and mass of secondary particle 
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 respectively. The secondary particle sizes and weights are found from an explicit algebraic models derived recently in [1], while 
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 is tracked directly using Eq.(5) below. Now, the OPTSPM could be obtained from the continuous SDPBE above by first integrating out the solute concentration by the formal application of Eq.(2) to Eq.(1). The result is an unclosed set of integro-partial differential equations that are easily closed by using the closure given by Eq.(3).  
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While the solute balance in the continuous phase reads :  
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Expressions for the source term 
[image: image43.wmf]r

p

are a little bit complex and are presented in [1]. The source term is equal to zero when 
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 as a natural constraint to satisfy the total dispersed phase mass balance. Note that all the over bar quantities appearing in the above system of equations are closed using Eq.(3). In particular, the dispersed phase velocity (with respect to the column walls) 
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is closed using the mass average velocity of two secondary particles and is given by:
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. Note that the dispersed phase represented by a one primary particle is moving with the mass average velocity of two adjacent secondary particles that is consistent with CFD models [4]. The slip velocity is given by an algebraic velocity model assuming that the liquid droplets could reach their equilibrium velocity in a short period of time compared to the system relaxation time [6]. The continuous phase velocity 
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is also function of the relative dispersed phase velocity, where two types could be distinguished: the oscillatory and nonoscillatory models [2]. From dynamic point of view the oscillatory model results in overshoots in the dispersed phase mean properties in response to flow disturbances [2].      
5. Spatial coordinate discretization  

The system of the model equations (Eqs. 4 to 7 ) comprise a system of conservation laws that are coupled through the convective and source terms and are dominated by the convective term for typical values of 
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 encountered in LLECs (Peclet No.(1(103H -2(103H). Due to the presence of breakage, coalescence and mass transfer source terms, the operator splitting technique [9] is applied by first solving the pure convective model equations using accurate front tracking discretization approaches. Second, the effect of source terms is taken into account by solving the model equations with only source terms are included. To insure numerical stability, an adaptive time step is derived to satisfy the monotonicity condition [9] .
6. Numerical results and discussion

To completely specify the problem, the following geometry is used for a laboratory scale LLEC:
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, the inlet feed is normally distributed with mean droplet diameter of 3 mm and standard deviation of 0.5 mm. The inlet solute concentrations in the continuous and dispersed phases are taken as 50 and 0 kg/m3 respectively, the rotor speed is 120 rpm and the total flow rate of each phase is taken 1.39(10-5 m3/s. The slip velocity (combining the Stock and inertial regimes) is taken from the work of Wesselingh and Bollen [10]. The chemical system is water-acetone-toluene, where the direction of mass transfer is from the continuous to the dispersed phase. The slowing factor and the droplet interaction functions are described in detail by Schmidt et al. [8]. 
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Fig. (1): Spatial convergence of the PSPM using the response of the dispersed phase hold up with oscillatory velocity model at 120 rpm.  
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Fig.(2): Response of the solute concentrations (using the oscillatory (dashed line) and nonoscillatory (solid line) velocity models) due to step change in 
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of magnitude +50%.
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Fig.(3): Response of the continuous and dispersed phase concentrations due to 
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Fig. 1 shows the response of the dispersed phase hold up during starting up of the column with constant rotational speed of 120 rpm, where droplet breakage is considered only. From numerical point of view, the profiles converge to the fine grid solution (400 spatial cells) where the maximum deviation occurs at the dispersed phase inlet due to the steep profile. As mentioned above, the oscillatory velocity model results in overshoots in the hold up profiles along the column. The time lag associated with distributed systems is also clear and increase away from the feed point. Due to the discrete nature of the dispersed phase the high velocity of the moving secondary particles makes the response of the hydrodynamic mean quantities (such as hold up) much faster than the solute concentration one. In particular, the micro-velocity of mass transfer by diffusion is much slower than that of convection. This is clear by referring to Fig. 2 where positive step change of magnitude 50% is made in the dispersed phase flow rate. First, both velocity models (oscillatory & nonoscillatory) show that the response of the solute concentration in the dispersed phase is faster than that in the continuous phase. Second, due to the overshoots in the dispersed phase, the solute concentration in both phases show also overshoots. Fig. 3 depicts the response of solute concentration in both phases due to ±50% step changes in the continuous phase flow rate. It is evident that the concentration of both phases show a highly nonlinear dynamics that is changing along the column height.       

6. Conclusions  

A reduced mathematical model is derived based on the concept of the primary and secondary particles from the detailed bivariate population balance equation. The model is capable of describing droplet breakage and coalescence without any specific assumption about the shape of the distribution. The averaged quantities in the reduced model were closed using a set of derived algebraic models describing the sizes and weights of the secondary particles. Accordingly, the full dynamic response of the extraction column could be predicted in short computational times. In this regard, the model is suitable for control purposes and for simulation packages using the modular approach. Concerning the column dynamics, the hydrodynamics of the column responds faster than mass transfer as reported experimentally by Hufnagel and Zamponi et al. [1, 2]. The solute concentration response due to step changes in the inlet flow rates is not only nonlinear, but also changes with regards to nonlinearity along the column. 
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