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Abstract

With improved quality control, a refinery plant can operate closer to optimum values. However, real-time measurement of product quality is generally difficult.  On-line prediction of quality using frequent process measurements would therefore be beneficial. In this paper, our learnings from developing and deploying a data-driven soft sensor for a refinery unit are presented. Key challenges in developing a practicable soft sensor for actual use in a plant are discussed and our solutions to these presented. Finally, this paper reports results from the online deployment and demonstrates their value for the plant personnel. 
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1. Introduction
Quality control relies on real-time measurement of quality, which is generally difficult and usual too infrequent to be used directly for good quality control. On the other hand, process measurements such as temperatures, pressures, and flow rates are available on a more frequent basis (every minute or every few seconds) than the lab or analyzer measurement.   Soft sensors are inferential models that use such easily available process measurements to predict the values of other useful but difficult to measure quantities. They can serve as an important tool to improve quality control and process operation, as they can provide frequent, timely and accurate estimations of product quality. In recent years, various inferential models have been developed to predict product quality using first principles, linear regression or neural networks (NN) models [1-4]. 
In this work we have developed a NN-based soft sensor for a refinery. The process considered is a crude distillation unit as shown in Figure 1. 


Figure 1: Process overview
ASTM 90% distillation temperature (D90) is commonly used to characterize quality in the refinery, and both lab and online analyzer measurements are available for this quality variable. However, the analyzer measurements are slow (total time delay of about an hour), infrequent (one sample every half an hour) and sometimes unreliable; the more accurate lab measurement of the same variable is even slower (time delay of hours) and less frequent (about one or two samples per day). It is not easy to build a first-principle model to predict product quality due to the complexity of the process. Because of the easy availability of large volumes of historical process data, empirical models are considered in this work. Furthermore the process is significantly nonlinear, and operates with varying feedstock, and at different operation conditions. A simple linear regression model would not work well for such case. Therefore a neural network approach combined with process knowledge has been selected in this work.

In this paper, our learning from developing and deploying this data-driven soft sensor is presented. The key challenges and some solutions to these are also discussed. Finally, this paper presents results from online deployment of the soft sensor in the plant.
2. Key Challenges in Developing Soft Sensors
Data-driven soft sensors require less process knowledge; they exploit historical operating data to extract the correlations between variables. In practice, the quality and quantity of data available for training pose hurdles, specifically
· Good quality data are not uniformly available. Erroneous samples in process variables, as well as analyzer and lab measurements occur due to poor calibration, measurement error, computer interface errors, etc. For example, Fig. 2 shows that sometimes the data is quite noisy with outliers or even measurement failures. These complexities must be taken into account during both model development and real-time use of the sensor. 

· In the current situation, there are two independent measurements of quality. There could be a mismatch between analyzer and lab measurements, in terms of both time and value. Analyzer and lab measurements have different sampling intervals and time delays, which causes mismatch in time of measurement. Sometimes there is also a mismatch between the analyzer value and the lab value as shown in Fig. 3 (the difference could be as much as 100C in contrast to required accuracy of 30C). Therefore, alignment of the data to counteract the mismatches is necessary.  

· Change of process operating conditions in the refinery is quite common. For instance, there were 7 significantly different types of crude feed in a given month as shown in Fig. 4.  Each feed corresponds to a different operating condition. In addition, new crudes and unit operation conditions are likely in the feature. Extrapolation beyond the range of the training data is called for with the concomitant difficulties.
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Figure 2: Data quality is highly variable
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Figure 3: Mismatch between analyzer and lab measurements of D90
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Figure 4: Variation in density of crudes used during a month 
· The process is a large scale one with hundreds of variables. It is impossible to include all of them in the inferential model. Therefore, some analysis must be done to identify the important variables as inputs to the soft sensor.

3. Soft Sensor 
A soft sensor based on neural networks and process knowledge has been developed to predict the refinery D90 quality variable. The process variables that serve as input to the network were selected offline based on process understanding and correlation analysis.  As these input variables represent different quantities – temperature, flow, pressure, etc – and have different scales, they were first normalised (auto-scaled) before being input to the neural network. Standard back propagation was used to train the network offline. To improve generalization, the available data was divided into 3 sets: training, validation, and test. The training set is used for computing the gradient and updating the network weights and biases. The validation set is monitored during the training process. Normally when the network begins to over-fit the training data, the error on the validation set will begin to rise. When the validation error increases consecutively, the training is stopped.  The test set is used to select the best model via prediction error compared to lab measurements and prediction correlation with analyzer measurements. 

This general neural network training strategy was supplemented with several additional solutions to systematically address the challenges described above. In order to shortlist the key input variables, correlation analysis was augmented by process understanding. Data analysis schemes for offline and online validity check was developed to uncover erroneous data. Metrics for performance evaluation were also developed in order to account for the mismatch between the two independent measures of quality. These are described next: 
3.1. Validity Check 

Sufficient historical data with good accuracy is essential to build a good inferential model. Historic data over two years sampled at 10 minute-intervals were collected from the process historian. Of these, data outside a prescribed range were removed as outliers. Further offline analysis was done to extract good quality training data where analyzer and lab measurements matched well. Only about 10% of the original data met these criteria and were used to train the neural network. 
For online deployment of the soft sensor, process data is also accessed through the process historian. A separate input validity check was also implemented for the online case; the last valid input is used when an invalid measurement is detected online. 
3.2. Analyzer/Lab data treatment 

The online analyzer samples the process automatically every 30-40 minutes and takes about 30 minutes to estimate the quality. To correlate the analyzer measurements with the process conditions, we evaluate various effective time delays between the process change and online analyzer measurement. The correlation between the analyzer and the process variables seem to be the highest when the overall time delay is set to an hour. This was also consistent with the plant engineer’s process knowledge. Therefore, the analyzer data are shifted by an hour during offline analysis and modelling. During online implementation, analyzer data are also aligned with the process data an hour ago.
Unlike input and analyzer data which come from the instruments directly, the lab data is manually recorded into the lab information management system, which is then reflected in the process historian. The time between taking the sample and updating the measurement in the process historian varies significantly, from an hour to several hours. This irregular availability of lab data complicates the online performance evaluation. 
3.3. Performance Evaluation 

As the key process time constants are about 1 to 2 hours, lab measurement available typically at 8 hour intervals is not enough to capture dynamics of the system. Therefore, the performance of the soft sensor has to be gauged from both the analyzer (of limited reliability) and the lab measurements. Two metrics – prediction error and correlation are used as the objective functions for developing the inferential model, so as to balance the performance requirements. The mean of absolute error and standard deviation are used for quantifying the prediction error. Correlation coefficient between the prediction and the analyzer measurement (corrected for the time delay) is used for prediction movement quantification. Several factors affect the correlation analysis including analyzer faults (outlier, drift, bias, etc.) and noise, analyzer measurement accuracy, analyzer bias change, and analyzer sampling time and delay.
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Figure 5: Online test result

4. Results

The soft sensor described above has been implemented using Visual C++ and deployed in the refinery. Some example results from online tests are reported next. Fig. 5 shows an overview of the prediction result during a 2-week window (a server shutdown and restart occurred on Aug 23; results during that period should be ignored). The correlation coefficient between prediction and analyzer measurement was found to be 0.71 for the whole data and 0.76 for data excluding analyzer errors. This is considered to be acceptable. It can be visually seen from the figure that the prediction movement pattern is similar to that of the analyzer. 
Table 1 shows the prediction error (between prediction and lab measurement) compared to the analyzer error (difference between analyzer and lab measurement). It can be seen that the prediction error (in terms of both mean and standard deviation) is smaller than the analyzer error.  As a further comparison, according to ASTM D86 standard [5-6], the analyzer has an accuracy of about 40C (one out of twenty will exceed this value; standard deviation is 20C for normal distribution). The soft sensor developed in this work compared favorably with this standard. 
Table 1. Prediction error compared to analyzer error

	Error (0C)
	All data
	Excluding outliers in lab samples

	
	Prediction
	Analyzer
	Prediction
	Analyzer

	Mean absolute
	2.7
	3.3
	2.4
	3

	Standard deviation
	3.5
	4.1
	2.9
	3.4


[image: image5.emf]355

365

375

385

8/18/2007 20:40 8/19/2007 3:20 8/19/2007 11:10 8/19/2007 17:20

Analyzer Analyzer+noise

 (a) [image: image6.emf]355

365

375

385

8/18/2007 20:40 8/19/2007 3:20 8/19/2007 11:10 8/19/2007 17:20

Analyzer Lab Prediction

 (b)

Figure 6: Analyzer measurement (a) and prediction (b)
5. Conclusions

This paper presents our experience from developing and deploying a data-driven soft sensor for a refinery. The initial online test results are encouraging. The prediction output of the soft sensor tracks the analyzer movement pattern well, and matches the lab measurement better than the online analyzer. The key advantage of the soft sensor is the complete absence of any time delay which would enable closed-loop control. Further, estimates are at regular intervals and higher frequency compared to the analyzer. Our current work is focused on extending the sensor with online learning – when a new crude is used or operating conditions go out of the range of training data, the model will update itself once it has enough data to recalibrate with adequate confidence. 
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