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Abstract

The quality parameters of paper are managed with rather independent decisions made by many process operators through the production line. Improving one quality parameter typically deteriorates another, and hence incoherent decisions tend to lead to suboptimal overall quality. Vast amount of laboratory measurements data support these operator decisions, yet how this information is utilized in practice, is not well known and appears to vary from production line to production line and operator to operator. We aim at coherent quality management of a paper production line through both optimizing the operator actions and scheduling the measurements of quality management optimally. We have chosen a Bayesian network formalism to integrate qualitative human knowledge and the measurement data about quality. We present an application with a Bayesian network as a model within stochastic dynamic programming. We demonstrate our modeling approach in a realistic case study, yet not in full-scale production-line wide quality management case.
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1. Introduction

The quality of end product in papermaking is a result of management actions through the entire production line. These actions are decided upon by several process operators based on process knowledge and data about the process state. Measurements of raw materials and material flows as well as product quality measurements in laboratory support these decisions. In principle, the actions are made coherent with coordinated subgoals for these decision makers. However, under dynamic disturbances the coherence easily breaks down and corrective actions are not made where it would be economically most beneficial. 

Depending on paper grade, there are 4-8 key quality variables, e.g. strength, roughness, brightness, opacity, and hue. Quality management attempts to keep these properties in prescribed balance while minimizing costs. Typically improving one property deteriorates another. 

We shall present a production-line wide quality model that informs the operative decision makers about action consequences to the other quality management decisions. Furthermore, if the balance amongst quality variables can be expressed as a single objective function and as a set of constraints, the model is suited for optimization, including scheduling of quality measurements.

Paper consists of wood fibers that have a wide distribution of properties. Hence, physico-chemical quality models are scarce. There exist huge amounts of process data at paper mills. The model sought in this work would require open-loop data with appropriately designed experiments but the existing data is closed-loop one with little input variations. The useful information about relationship between quality and operative actions is either qualitative human knowledge or data of small sections of the production line. 

In this study, we have chosen a Bayesian network formalism to integrate qualitative knowledge and process data. Bayesian network (BN) is a probabilistic graph model for the dependences between [1]. BN allows probabilistic inference on quality dynamics. Dynamic programming is a method to find the actions maximizing a given objective. We shall demonstrate the use of a Bayesian network as a model for stochastic dynamic programming. 

This paper is organized as follows. In Section 2, we review Bayesian network as stochastic dynamic model. Section 3 presents the dynamic programming problem with uncertain state measurements and the measurement scheduling problem. Section 4 shows how the methods can be applied for quality management and measurement scheduling in papermaking and presents examples of results obtained. Section 5 discusses the challenges remaining to take the methods in use for practical quality management at paper mills.   

2. Bayesian network
Bayesian network is a probabilistic graph model, which describes dependences between variables. Dynamics can be described as BN as shown in the Fig. 1a, where x is the state variable, z is the uncertain measurement about the state and u is the control action to the process. Fig. 1b shows how a linear state model can be interpreted as a BN, corresponding to 
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(1)
Hence, BN of Fig. 1a can be understood as a non-linear stochastic dynamic model that can be expanded to discrete-valued states. 
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Figure 1a. Dynamic Bayesian network.

Figure 1b. BN of linear state 
model.
Independently on whether the state in BN is continuous or discrete the dynamic model is written as conditional probabilities 
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. Then the state, given measurement and action history is inferred about as
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where 
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 is a collection of measurements, 
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 is a collection of control actions to the process and C is a normalization factor. 

Table 1 shows an example of discrete state dynamic process model. 

Table 1. Example of probability density table with two control actions uk1 and uk2.

	p(xk+1|xk,uk1)
	xk =

high
	xk =

ok
	xk =

low
	
	p(xk+1|xk,uk2)
	xk =

high
	xk =

ok
	xk =

low

	xk+1 = high
	0.8
	0.15
	0.05
	
	xk+1 = high
	1
	0.9
	0.8

	xk+1 = ok
	0.15
	0.7
	0.15
	
	xk+1 = ok
	0
	0.1
	0.2

	xk+1 = low
	0.05
	0.15
	0.8
	
	xk+1 = low
	0
	0
	0


3. Dynamic programming

Dynamic programming (DP) is an algorithm to compute an action sequence so that a given objective is optimized over a given time horizon. Typically the objective is to minimize costs, due to actions and resulting quality, taking into account the expected future with future optimal actions. 

3.1. DP-algorithm for uncertain state information

If the state of the system is known exactly through measurements, dynamic programming is solved with backwards recursion [2]. As a result, optimal action sequence is obtained. However, if the state of the system is known only through uncertain measurements the solution becomes much more complex. In our application, there is considerable uncertainty in quality measurements, and hence this more complex problem must be addressed.
If the state is known through uncertain measurement, the information must be expressed as probability densities, c.f. measurement equation in Eq.(1). For uncertain state information the DP-algorithm takes the form [2,3]
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where 
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 is the cost function of the state and we have assumed the overall cost additive of these two components. The future state is defined as 
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The optimal sequence of actions is then obtained by solving 
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This problem cannot be solved backwards since the cost function depends on probability 
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 which cannot be solved independently as shown in the Eq. (2). Instead a tedious but manageable solution that propagates the priors forward was applied.
3.2. DP-algorithm with measurement control subsystem

Let us consider a case when only a limited number of measurements can be done at any given time step. In that case not only the actions to the process need to be optimized, but also the measurements must be scheduled. Let us denote the choice of the measurement by m and the collection of choices up to time N by MN   =  [mN   MN-1]T.  
Now the cost at time k depends not only the state and the control to process, but also of the measurements chosen. The DP-algorithm takes the form
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with 
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The optimal sequence of actions is then obtained by solving 
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However, the measurement scheduling problem needs not to be solved together with optimal control policy, but it can be solved separately solving the Eq. (4) with varying measurement policy as
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4. Case: Quality management in papermaking

As a case we consider quality management problem in papermaking. Within quality management the balance between brightness and strength by manipulating fiber fraction ratio and dosage of bleaching chemicals is an important subtask. The Bayesian network of this case is shown in the Fig. 2. 
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Figure 2. Bayesian network of the quality management case.

Four states have been defined for brightness (critical, low, ok, too high) and three states for strength (critical, low, ok). Measurements of brightness are discretized into eight values and measurements of strength into seven values. The control actions are also discretized, both into five values. Such discretization is appropriate for practical decision making at paper mills. Brightness is mainly controlled by dosage of bleaching chemicals and strength by fiber fraction ratio, but both control actions have impact on both quality variables. The delay for fiber fraction ratio is one time unit and for dosage of bleaching chemicals delay is two time units. One time unit corresponds to manufacturing time of one machine reel. The parameters for the model have been identified by combining information from operator interviews and quality data [4]. 

If the optimization horizon is three (N=3) and if only one measurement can be made at time, 8 measurement scheduling options exists. We now present a small example in which the process is simulated to behave according to the model in optimization (Table 2). This is a recovery from poor brightness state. After initial measurement of brightness the actions measurements are chosen to monitor the recovery while keeping track on the strength development in case of sudden disturbance in this property. Note that one-step-ahead optimal measurement at 
[image: image20.wmf]6

=

t

 deviates from that of two-step-ahead optimal calculated at 
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. This is because at 
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surprisingly good brightness was observed and hence switching the measurement over to strength is justified.
Table 2. Summary of simulation results with optimization horizon N = 3. The first line shows the values of measurement chosen to be made. As only brightness or strength can be measured, the one not measured is denoted with '-'. The second line gives the optimal and implemented actions based on the measurement value. The third line gives the true process states (note the different scale of measurements and states) that are not observable to optimizer. At N = 2 and 3, only the optimal measurement is given, M denoting a measurement, '-' not a measurement. In all pairs in the table, the first value refers to brightness and the second to strength.
	
	t = 0
	t = 1
	t = 2
	t = 3
	t = 4
	t = 5
	t = 6

	N=1
	Meas. value
	2
	-
	-
	6
	-
	6
	6
	-
	-
	7
	6
	-
	-
	6

	
	Opt. control
	4
	4
	3
	3
	4
	3
	3
	3
	3
	3
	3
	3
	3
	3

	
	True state
	1
	3
	1
	3
	2
	3
	3
	3
	3
	3
	3
	3
	3
	3

	N=2
	Opt. meas.
	-
	M
	-
	M
	M
	-
	-
	M
	M
	-
	M
	-
	M
	-

	N=3
	Opt. meas.
	M
	-
	M
	-
	M
	-
	M
	-
	M
	-
	M
	-
	M
	-


If both measurements can be made simultaneously but with higher uncertainty, measurement scheduling options are increased to 27, and if one option is to measure neither, 64 measurement scheduling options exists with the optimization horizon of three.

5. Conclusion

In this paper we have shown the use of Bayesian network as a model for dynamic programming. We have presented the quality management problem in papermaking and shown a method to optimize the control action to the process and the control to measurement subproblem. 

An obvious problem in the presented approach is the curse of dimensionality. As the number of variables, states and controls and the dimension of measurements increase and as the time horizon increases, the recursion becomes deeper and the calculation time consuming and memory intensive. One solution to somewhat manage the dimensionality problem is reducing the discretized values of measurements further down in time horizon. 

Identifying a Bayesian network is non-trivial. The verification of probability models based on human knowledge would require open-loop data, but only a closed loop data with little input variations is available. Therefore tuning the model is time-consuming and interactive process. The models applied within this study are versions that will need further analysis and practical testing. 
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