18th European Symposium on Computer Aided Process Engineering – ESCAPE 18

Bertrand Braunschweig and Xavier Joulia (Editors)

© 2008 Elsevier B.V./Ltd. All rights reserved.

6

 MACROBUTTON AbaisserNiveauListe "L. Testard"
 MACROBUTTON AbaisserNiveauListe "Quality Assurance of simulation results"

5

 MACROBUTTON AbaisserNiveauListe "Quality Assurance of simulation results"
 MACROBUTTON AbaisserNiveauListe "Laurent Testard,a"
 MACROBUTTON AbaisserNiveauListe "aHALIAS Technologies, Le Soubon, Revel, F-38420, France, contact@halias.fr"
Abstract

This paper discusses the automation of the tests of Process Simulation results, and the way that the tests can be integrated in a typical simulation project. Based on existing experiences in another domain (such as micro-electronics), we propose a novel approach by introducing a tool dedicated to the automation of tests of simulation results. This tool is the Quality Testing System (QTS), developed by HALIAS Technologies.
Keywords: Quality Assurance, Tests Automation, Time Series, Process Simulation, CAPE-OPEN
1. Introduction

1.1. Concepts and definitions
The subject of this paper is the testing of Process Simulation software, mainly from two points of view: firstly Process Simulators, in the field of Operator Training Simulators or Engineering Simulators (i.e. simulators dedicated to engineering studies), and secondly Process Simulation Software, for the design of these simulators.

Because simulators are software environments, techniques related to software tests [1] apply to simulation software. Simulation Software Testing is the process of ensuring that the data computed by a software simulator fulfils the expectations of the users of the simulator. These expectations can be of functional nature (based on physical criterion, for example a simulated variable value must be greater than a physical limit) or non functional (typically performance related or quality related). This process mainly uses two techniques: Acceptance tests and Regression tests.

Acceptance tests (known as FAT – Factory Acceptance Tests - or SAT – Site Acceptance Tests) are the tests performed on the software in order to ensure that it fulfills all the client's expectations, in terms of contractual functional or non-functional requirements. Acceptance tests are generally performed at the end of a project or at intermediate milestones in a project's life-cycle.
Regression tests are tests performed on successive releases of software, to assert that successive integrations of functionalities did not degrade existing ones. These tests can be applied in different situations:
· During the software development process, nightly builds can be tested against a battery of reference tests. Those tests can be expressed as business rules or in terms of comparisons to reference values.
· Between each major release of a software product. Reference business tests cases must be validated on the new version of the software. Those test cases include functional and non functional (such as performance or quality related) requirements testing.
A Test Case is an elementary test that can be performed on a value or a set of values. A set of Test Cases is generally called a Test Suite, and the Test Cases that are part of a same Tests Suite are generally related from one to each other.
1.2. Analysis of existing simulation projects
This section sums up conclusions of a survey we conducted on two different projects in the field of Process Simulation, and from personal experience in the field of Micro-Electronics circuit simulation whose techniques are quite similar to the Process Simulation domain, but which makes extensive use of tests tools to improve designs as well as simulation environments.
1.2.1. Development of an Operator Training Simulator
Tests results are deliverables of a typical Operator Training Simulator project. At specification time, the tests express the client's requirements. Tests are important during the project life time because intermediate tests (i.e. tests performed during the design and development of the simulator) can guide technical orientations and provide useful information on the process design. The final phases of a typical OTS project involve processing of acceptance tests.

From our studies, the global test effort on this particular project is estimated to at least 20% of the global project effort: this effort is divided in tests specifications and tests execution. As a direct consequence, an improvement in this field can then lead to important gains in the development of the simulator.

1.2.2. Complex Unit Operation development
The studied project consists in the refactoring (rewriting of a functionally equivalent code with higher quality standard or interoperability requirements) in the form of several CAPE-OPEN Unit Operations [2], to be used in steady state simulators.
For this particular project, the global budget is 1.5 person.year for software development. The tests processing is central in this context because there exist a reference implementation of the software that can be used to generate reference test cases. The global testing effort on the project is approx. 30%, including the execution of acceptance tests and the collection of reference values to run regression tests on a nightly basis. Tests also include interoperability tests (i.e. the use of the Unit Operations in conjunction with several types of Simulation Environments such as Aspen + or Pro/II). The acceptance test suites include more than fifty Tests Suites, each one including several hundreds of Test Cases.
1.3. Micro-electronics examples
SPICE [3] is general simulation software whose first version was issued in the beginning of the 70s. SPICE simulators perform Steady-State and Transient analysis of electronic components circuits (capacitors, resistances …). This project was forked to commercial implementations and is the basis for a multi-billion dollars market.
Many tools and techniques related to tests exist in the SPICE world, and the simulation methods can be compared to the ones that exist in the Process Simulation world. We propose the following comparison matrix for the key characteristics of the domains of Micro-electronics and Process Simulation.

	Characteristic
	Process Simulation
	µElec. Analog simulation

	Simulation modes
	Steady State, Dynamic
	Steady-State, Transient

	Problem Size
	1,000 (100,000 variables
	100,000(100,000,000 variables

	Model types
	Complex, multi-physics
	Simple

	Connections between simulation nodes
	Simple (INFORMATION)

Complex (MATERIAL)
	Simple

	Numerical methods
	Constant step size ODEs and DAEs resolution, non linear systems
	Elaborate, variable step size ODEs and DAEs resolution, non linear systems

	Interoperability
	CAPE-OPEN
	None

	Test Suites size
	N/A
	> 100,000 Test cases for each simulation software

Table 1: Comparison matrix between Process Simulation and Micro-electronics
The interoperability subject is not suitable to the field of micro-electronics, because the execution of a code in another vendor's environment is generally prohibited by the vendors. As a direct consequence, every software vendor in the field of SPICE simulation has its own testing environment for its internal QA process and generally provides it to its client s for benchmarking purposes.
·
[image: image1.emf]

Max Bound

Up time

Reference value

Min Bound

Objective +/ - 5%

Noise detection

t ime

Temperature

Figure 1: Examples of tests of a Time Series
1.4. Difficulties
Efficient testing is generally difficult because of the numerical nature of the values that are computed: numerical values cannot be tested directly and may require precise mathematical techniques (for example, filtering or statistical methods). This is especially true for dynamic simulation where the results of a simulation are Time Series.

Figure 1 shows a typical test suite for a given Time Series (corresponding to a single process variable in a dynamic simulator, the simulated values of a temperature variable) which gives a good idea of the complexity for dynamic simulation testing. In order to circumvent these difficulties, the kinds of tests relevant to Simulation Software must be identified. Each one of these tests must individually address a specific problem, whether on the nature of the data that is being tested or the kind of defects that it must detect.

1.5. A first classification of Tests
The following classification is based on our experience in micro-electronics and classical usages in the field of test automation. It can be expanded to reflect new usages and specific problems.

· Behavioral tests verify a functional characteristic of a simulator (e.g. a function point, the stabilization of a signal …). On Figure 1, we illustrate a bound test, an objective test and an up-time test in this category. The failing of one of these tests indicate that the simulated value is not correct (for example, the minimum bound can be a physical limit and the maximum bound a process limit).
· Performance tests aim to enforce the time-related constraints for a given objective such as simulated time / sec, memory bounds, real-time simulation enforcement.
· Regression tests consist in the comparison of the values to a reference value (as shown on Figure 1, where the reference value is a time series).
· Business related tests are virtually any tests that deal with the specific business of a component of a simulator: for instance, reference phase envelopes for thermodynamic servers.
· Statistical / Frequency tests are based on Time Series analysis [4] or statistical processing to extract hidden information from the Time Series. On Figure 1, we illustrate this category with a noise detection test based on frequency analysis techniques, which can indicate that there is a problem in the design of the simulator.
· Others: every user has potentially specific tests to perform, depending on the particular project context, the physical nature of the simulation, own experience …
1.6. First conclusions
This study highlights the need for a generic, interoperable, open (new test kinds can be added depending on the clients' needs) and automated testing solution. This software tool can be used for static and dynamic simulation and must propose some tests in the categories that were identified. The next section presents the QTS system that fulfills these requirements by providing a framework for tests performed on simulation data.
2. Description of the QTS System

2.1. Architecture
QTS (Quality Testing System) is a software system developed by HALIAS Technologies that automates the tasks of testing simulation results. QTS can be installed on an existing network infrastructure as shown on Figure 2: QTS architecture.

[image: image2.emf]

Browser (analysis)

Instrumented simulator

Simulated values

Browser (report)

QTS System

Run

Navigate for failure analysis

instrumentation

Retrieval of simulation results for tests

Figure 2 : QTS architecture
Unlike distributed modeling approaches such as DOME [5], QTS proposes a test dedicated toolbox for the launching of simulators on remote workstations and the acquisition of values from these simulators that handles the diversity of simulation environments and requires no modification on the simulation environments.
The QTS system is intended to be used by Process, Software or Quality engineers working on a project as identified in the previous sections. The first task is to instrument existing simulation software by inserting a CAPE-OPEN compliant Unit Operation in the flow sheets, the DIABOLO Unit Operation (see [6] for details). Because of CAPE-OPEN interoperability, this operation does not require modifications in the simulation software as long as it is CAPE-OPEN compliant (all major Simulation Software vendors provide a CAPE-OPEN compliant version of their software), for steady-state simulation modes or even for dynamic ones such as INDISS developed by RSI.
2.2. QTS features
The system supports the tests categories identified in section 1.1, suited to both steady state and dynamic simulation. For each kind of tests, a specific page is presented to the user that displays the reason of the failure, via graphical curves, values, text, or any form suitable for the test. Test Cases can be organized in a multi-level hierarchy (Test Case, Test Suite and Test Campaign), to reflect the finality of the tests. Finally, QTS is open to other tests, as it allows users to integrate specific tests in the system.

At run-time, the system supports immediate execution as well as several modes of scheduled execution (fixed dates, nightly, external events). It supports major Simulation Environments due to the CAPE-OPEN interoperability. Finally, the system can launch simulations on multiple remote workstations at the same time, enabling both the management of the licenses of the simulation software that are used and the clustering of computers for higher volumes of tests.
Test results appear on feature-rich web pages. Web technologies allow the presentation to the user of the status of the simulation. By following hypertext links, the user can analyze results with more precise reporting tools including images, graphics, or specific numerical methods. Many standard reporting methods are present on the system (mail, syndication flows, PDF reports), allowing the integration of QTS into existing workflows.
3. Conclusions
3.1.1. Gains estimation on typical simulation projects
The QTS system automates the execution and the analysis of the results of the tests on a Process Simulator. The use of the system saves the time needed to launch and analyze the results of a simulation. Because it consists in the wiring a specific Unit Operation in existing flow sheet using the flow sheet editors of major Simulation Design tools, the integration of QTS in a CAPE-OPEN compliant Simulation Environment is painless. As a consequence, the cost of this integration phase is very low.
As a conclusion, a significant part of the test effort can be saved by using the QTS system, which can be as high as 30% of the global project effort.

3.2. Conclusion
The QTS system is a powerful, feature rich system that introduces a new way of testing Simulation Software. QTS increases productivity on Process Simulation related tasks, or during the development of Simulation Software tools. It can be profitably used on existing projects such as Simulation Projects (Operator Training Simulators as well as Engineering Simulators) or during the development of Simulation Software environments.

3.3. Perspectives
The major evolutions of the system include clustering services, instrumentation automation (special agreements with software vendors will be necessary), timelines visualization, powerful reporting methods, and integrating new tests.
· References
[1] M. Fewster, D. Graham, 1999, Software Test Automation, Addison Wesley
[2] B. Braunschweig, R. Gani (Eds), 2002, Software Architectures and Tools for Computer Aided Process Engineering, Vol. 11, Elsevier.

[3] D. Pescovitz, http://www.coe.berkeley.edu/labnotes/0502/history.html
[4] R. H. Shumway, D.S. Stoffer, 2005, Time Series Analysis and its Applications (Springer Texts in Statistics), Springer-Verlag
[5] David R. Wallace, Shaun Abrahamson, Nicola Senin, Peter Sferro, Integrated Design in a Service Marketplace, Computer-aided Design, volume 32, number 2, pp. 97-107, 2000.
[6] L. Testard, 2007, Remote Operation of CAPE-OPEN compliant software, http://colan.org/News/Y07/news-0701.htm
_1263064165.doc

[image: image1]

Min Bound

Max Bound

Objective +/- 5%

Up time

Reference value

time

Noise detection

Temperature

_1263064167.doc
[image: image1.jpg]

[image: image2.jpg]

[image: image3.emf][image: image4.emf][image: image5.emf]

[image: image6.png]

Browser (analysis)

QTS System

Navigate for failure analysis

Simulated values

Instrumented simulator

Browser

(report)

Run

instrumentation

Retrieval of simulation results for tests

