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Abstract

Multi-state operations are common in chemical plants and result in high-dimensional multivariate, temporal data. In this paper, we develop self-organizing map (SOM) based approaches for visualizing and analyzing such data. The SOM is used to reduce the dimensionality of the data and visualize multi-state operations in a three-dimensional map. During training, neuronal clusters that correspond to a given process state – steady state or transient – are identified and annotated using historical data. Clustering is then applied on SOM to group neurons of high similarity into different clusters. Online measurements are then projected on to this annotated map so that plant personnel can easily identify the process state in real-time. Modes and transitions of multi-state operations are depicted differently, with process modes visualized as a cluster and transitions as trajectories across SOM. We illustrate the proposed approach using data from an industrial hydro-cracker.
Keywords: Self-organizing map, visualization, multi-state operations, data mining.

1. Introduction
Multi-state operations are increasingly common even in petrochemical plants that have traditionally been considered as operating in a ‘continuous’ fashion. In general, the process operation can be classified into modes and transitions. A mode corresponds to the region of continuous operation under fixed flowsheet conditions; i.e., no equipment is brought online or taken offline. During a mode, the process operates under steady state and its constituent variables vary within a narrow range (Srinivasan et al., 2004). In contrast, transitions correspond to the portion of large changes in plant operating conditions due to throughputs, product grade changes etc. Transitions often result in suboptimal plant operations due to production of off-specification products. Understanding transitions and minimizing their duration can lead to major savings and increase periods of normal operation. Advancements in sensors and database technologies in chemical plants have resulted in the availability of huge amount of process data. Visual exploration methods, which facilitate humans to uncover knowledge, patterns, trends, and relationships from the data is hence crucial in understanding process operations, especially when multi-state operation and transitions between them is common. 

In this paper, we exploit the dimension reduction ability of the self-organizing map (SOM) for visualizing multi-state operations. The organization of this paper is as follows: Section 2 provides the literature review of data visualization methods and principles of SOM, Section 3 describes the proposed methodology for visualizing multi-state operations. The proposed method is illustrated using an industrial hydrocracking unit in section 4. 

2. Visualization of Multi-variate Data
Visualization techniques use graphical representation to improve human’s understanding of the structure in the data. These techniques convert data from a numeric form into a graphic that facilitates human understanding by means of the visual perception system. The Principal Components Analysis (PCA) has been a common visualization technique used widely for high-dimensional data. PCA is a popular statistical technique for dimensionality reduction and information extraction. It finds combination of latent variables that describe major variation in the data (Wise et al., 1990). In general, only a few principal components are necessary to adequately represent the data. In cases where the dimensions of multivariate data can be reduced effectively through PCA, visualization can be achieved through the biplot of the first few scores as they would explain the most important trends in the data. However, the linear approximation of PCA might not be sufficient to capture nonlinear relationships in the multivariate data. Also, the first two or three principal components are often not adequate for capturing all important variance in the data, so depiction of observations in a 2- or 3-dimensional coordinate plot is not adequate. Finally, when multi-state operations are visualized, the scaling of each variable is dominated by the large variation during transitions; significant changes within a steady state would be obscured by the depiction. To overcome these shortcomings, a self-organizing map based methodology is developed in this work for visualizing high-dimensional, multi-state operational data. 
2.1. Self-Organizing Maps 

The Self-Organizing Map (SOM) is an unsupervised neural network first proposed by Kohonen (1982). It is capable of projecting high-dimensional data to a two dimensional grid and thus can serve as a visualization tool. Self-organization means that the net orients and adaptively assumes the form that can best describe the input vectors. 
The SOM employs nonparametric regression of discrete, ordered reference vectors to the distribution of the input feature vectors. A finite number of reference vectors are adaptively placed in the input signal space to approximate the input signals. 

Consider a dataset X containing I samples, each N-dimensional. X is therefore a 2-dimensional matrix of size I x N, with the ith sample 
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. The SOM is an ordered collection of neurons. Each neuron has an associated reference vector 
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 with J neurons, which has to be trained to represent and visualize X. This involves the calculation of the reference vector of every neuron. Initially, let each mj be assigned a random vector from the domain of X. When a sample 
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 is presented to the SOM for training, the neuron whose reference vector has the smallest difference from xi is identified and defined as the winner or the Best Matching Unit (BMU) for that input:
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The distance 
[image: image6.wmf] between xi and mj is measured here using the Euclidean metric, but other metrics can also be used. 

During training, when each sample 
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 is presented, the reference vector of the BMU, mbi, as well as those of its topological neighbors in the grid are updated by moving them towards the training sample xi. In its simplest form, the SOM learning rule at the tth iteration is given as: 
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where  α(t) is the learning rate factor, and hbij(t) is a neighborhood function centered on the BMU bi but defined over all the neurons in MSOM. 

The SOM can be used for visualization. One way of visualizing clusters in X is by means of the distance between a neuron and each of its neighbors (Ultsch and Siemon, 1990). The unified distance matrix (U-Matrix) visualizes the SOM by depicting the boundary between each pair of neurons by a color or gray shade that is proportional to their 
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 being the set of neurons that are topological neighbors of neuron j. Clusters in the trained SOM can be labeled and directly used as a two-dimensional display to depict a new sample xi from the space of X. This is particularly useful for identifying the class (cluster) of a new sample. 
SOM has been used successfully in diverse fields. Deventer et al. (1996)  demonstrated how disturbances in a froth flotation plant can be visualized using the SOM. Features were extracted from gray-level images of the froth and then visualized using the SOM. A change in the hits from one region of the SOM to another indicated a change in the froth and hence a change in the underlying operating conditions. Kolehmainen et al. (2003) used SOM to visualize the various growth phases of yeast based on data obtained from ion mobility spectrometry. They showed that hits from the same phase cluster together, but are separated from those from other phases by “mountains” of high distance between the neurons. In summary, previous work have largely focused on exploiting the clustering capability of SOM for grouping multivariate data. In this paper, we extend SOM to visualize in real-time the multivariate samples originating from multi-state processes. 
3. SOM for Representing Process Operations

In this section, we propose a SOM-based methodology to depict multi-state process operations. In the proposed representation, data from different process states (steady state and transient) demonstrate different characteristics in the SOM space. Steady states form clusters of adjacent BMUs while transient operation is reflected as a trajectory. Differences between two states can be observed easily based on the location and evolution of the BMUs. 

A SOM has to be suitably trained to represent various process states. During training, the neurons on the SOM will orient themselves and evolve into a process map representing all the operating conditions in the training data while preserving the topology (geometric form) of the measurement space. The trained SOM model can then be used to visualize the process state in real-time. 

3.1. Visualization of Process States

For visualizing process operations, data from online sensors, xi, are first projected on the trained SOM and the BMU of xi, mbi, identified. The location of mbi on the SOM indicates the current state of the process. Process modes and transitions display different characteristics on the SOM space. When a process is in a mode, all its variables have near-constant values. Therefore, online measurements from such a state should be projected on the same BMU. Noise and minor variations in process operation could result in projection of the online measurement to different BMUs, however these would be neighboring neurons because of the topology preserving feature of SOM training. Process modes can thus be identified when a high frequency of BMUs are found within a small neighborhood in the map. 
In contrast, process transitions are characterized by large changes in plant operating conditions. Such evolution of the variable values during the transition would cause the BMUs to traverse over a wide region in the SOM space. The transition can be visualized by connecting the successive BMUs and displaying the trajectory of process evolution. During transition operations, continuous variables would cause the BMU to advance through adjacent neurons, resulting in a smooth trajectory on the SOM space. However, discrete variables would cause abrupt jumps to a BMU since they correspond to abrupt changes in plant operations. They are hence exhibited as discontinuous evolution in the trajectory.  

3.2. Neuronal clusters 

Next, consider the relationship between the process states and their depiction on the SOM map. A larger SOM with more neurons would offer finer resolution of operating conditions and is required to precisely visualize transition conditions and progression. However in large SOMs, even small changes in the operating condition would lead to different neurons (although in the same neighborhood) becoming the BMU, i.e., the “noise” absorbed by each neuron is low. To meet the conflicting requirements of finer resolution and better noise absorbance, a second layer of abstraction can be defined by grouping neurons into neuronal clusters.

A neuronal cluster is defined as a set of contiguous neurons in the SOM map with high similarity in mj. The neuronal cluster exploits the topology preserving feature of SOM and are defined by clustering the neurons in the trained SOM based on their reference vectors. Let all the neurons in MSOM be grouped into K neuronal clusters 
[image: image12.wmf]{

}

1

,...,...

kK

SSS

. The assignment of neuron j to cluster k is specified by a membership function ujk:


[image: image13.wmf]1if neuron  is assigned to cluster 

0otherwise

jk

jk

u

ì

=

í

î

.
(3)
Any clustering technique can be used to specify ujk. We used the k-means clustering algorithm, which identifies the K clusters so as to minimize the total squared distance, εp (Seber, 2004):
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where, ck is the centroid of the kth neuronal cluster. In the following sections, these characteristics of SOM are exploited for representation and visualization of high-dimension process operational data.
4. Transition Identification & Visualization in an Industrial Hydrocracker
The process analyzed in this section is the boiler of a Hydro-cracking Unit (HCU) in a major refinery in Singapore (Ng et al., 2006). Hydro-cracking is a versatile process for converting heavy petroleum fractions into lighter, more valuable products. The objective of HCU is to convert heavy vacuum gas oil (HVGO) to kerosene and diesel with minimum naphtha production. The detailed description and flowsheet of the process can be found in Ng et al. (2006) and will not be reiterated here. The operations of the HCU considered are complex, and involves catalytic hydro-cracking reactions in a hydrogen-rich atmosphere at elevated temperatures and pressures. The HCU includes two sections, a reactor section and a fractionation section. Integrated to both thesesections is a waste heat boiler (WHB) unit for heat recovery. This section illustrates the application of SOM for visualizing different operating states in the WHB unit.

4.1. Analysis of operating data from Waste Heat Boiler 

In this study, one month of operating data consisting of 21 measured variables from the WHB unit sampled at five-minute interval is considered. The data was auto-scaled (through mean centered and scaled to unit variance) and used to train a SOM with 468 neurons and dimension of 
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. The trained SOM was then clustered with K = 70. The clustered SOM was annotated with the typical regions of operation. Next, we demonstrate how the SOM can be used for decision support in the WHB. As can be seen from Figure 1, the WHB unit operates in 5 different modes, shown as M1 to M5. Mode M2 corresponds to the production of steam at a throughput of 22T/hr, mode M3 corresponds to 12T/hr, and mode M4 corresponds to 17T/hr. Analysis of the SOM shows that the unit underwent 7 different transitions during the period under consideration. Five instances of these transitions are shown in the figure. In one instance, depicted as TA34, the unit transitioned from mode M3  to mode M4 in 140 mins. Another instance of the same transition TB34 required only 85 mins. The operating strategy for the latter instance can therefore be used as the basis for all future transitions of this class.
To illustrate the robustness, the same trained SOM was also used to visualize the operation during another 15-day period. Since data from this period was not used during the training, it demonstrates the SOMs generalization-ability. The mean quantization error (averaged sum of squared error between each sample and its BMU) for this period was 0.906, indicating that SOM provides a good representation for these as well. During this period, the plant was observed to operate in mode M3 for 83% of time, about 3% in M2 and 4% in M4. The process underwent transitions for a total of 32.5 hours (~10%) during this period. All the transitions could be easily visualized with the previously trained SOM.    
For the purpose of comparison, we also attempted to visualize the same data using PCA. The first three PCs captured 85.47% of the variance as shown in Figure 2. Data from the five modes identified from the SOM are shown in the biplot. In contrast to the SOM, the different modes of operation are not as clearly delineated by PCA. 
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Figure 1: Visualization of transition trajectories for the refinery WHB unit
5. Conclusions 

Methods that enable effective visual exploration are crucial for extracting knowledge from complex, high-dimensional, temporal, multi-state data. In this work, we have shown that the self organizing map provides a method to reduce dimensionality and visually depict high dimensional process data in an intuitive graphic. Process operation can be represented in the SOM with each state – mode or transition – having a distinct representation. Application of the proposed approach to the operations of an industrial boiler within a hydro-cracker in a major refinery illustrates the benefits of visualization in extracting process knowledge even from complex, multi-state operations. The different states that the process operates in can be segregated. If multiple instances of the same state are present in the data, they can be compared. The trained map can also be used for real-time state identification by identifying the location of the latest BMU on the annotated SOM. In contrast to traditional dimensionality reduction approach such as PCA, which preserve global distances, the SOM dedicates neurons to an operating region only if it is present in the training data. It thus offers a more compact and rich representation of the operation.
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Figure 2: Visualization of the WHB unit operation using first three scores
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