18th European Symposium on Computer Aided Process Engineering – ESCAPE 18

Bertrand Braunschweig and Xavier Joulia (Editors)

© 2008 Elsevier B.V./Ltd. All rights reserved.

6

I D Stalker et al
Towards an Interface Standard for Automated Design: a Proposal

5

Towards an Interface Standard for Automated Design: a Proposal
Iain D. Stalkera, Eric S. Fragab
aManchester Business School, The University of Manchester, Manchester M15 6PB, UK
bCentre for Process Systems Engineering, Department of Chemical Engineering, University College London WC1E 7JE, UK
Abstract

We propose a set of interface specifications for automated process design tools. These derive from a model of top-level interaction with a “typical” design tool. We present the material in the spirit of debate to invite discussion and stimulate further work.
Keywords: Process Design, Automated Tools, Interface Standards, CAPE-OPEN
1. Introduction
The CAPE-OPEN Interface Standards and the enthusiastic take up of these by software vendors have done much to promote the interoperability of heterogeneous software components for process simulation. This greatly facilitates an engineer in an area which benefits from a wide array of automated tools and techniques. An engineer can utilise the “best-in-class” for each component, free of proprietary constraints. Yet, a simulation implies that an engineer has (at least) one complete model of the process of interest. Often, this is not the case: at best an engineer might only have a partial model; more likely, an engineer will make use of existing (design) tools to create a suitable process. Process design signifies the activity of identifying an appropriate sequence of unit operations and their interconnections—material, energy and control—to attain desired targets and achieve the best performance possible. Currently, automated tools for process design do not implement or use standard interfaces. Furthermore, each tool requires its own particular precise problem definition. This puts one of the most important aspects of process engineering “out of sync”: it lags. In COGents (Braunschweig et al 2004, Yang et al 2007), we created a set of adapters through which an automated design tool, Jacaranda (Fraga et al 2000), could make use of CAPE-OPEN compliant resources to inform its approach, making the wealth of resources in the wider CAPE community available to the designer. A natural step is to take the converse direction: to bring process design into the remit of initiatives such as CAPE-OPEN, by developing a set of (standard) interfaces through which to expose design functionality to a broader user group. We report on steps taken during and since the COGents project towards the development of a set of generic interfaces for an automated process design tool. Our investigations lead us to conclude that sets of interfaces are more appropriate than a single “gold standard”. We include some brief notes on how the discipline of algebraic specification, especially institutions (Goguen and Burstall 1992) provides a formal framework for such a set of interfaces to “work”.
2. The Nature of Process Design
What distinguishes design from any other CAPE activity is the undefined nature of the problem from the start. In the course of design, the imprecision and uncertainty decrease until a solution is eventually obtained. It is well-established that design problems (in general) are so-called “wicked problems”, e.g. see Cross (1984), which have incomplete, typically contradictory requirements which evolve as more about the problem is understood. Often solutions are difficult to recognise because of complex interdependencies. Moreover, when solving a wicked problem, the solution of one of its aspects may reveal or create other, even more complex problems. The uncertainty, vagueness or lack of information which typifies (process) design problems makes them “ill-structured” (Simon, 1973). Ill-structured problems do not have well-defined problem (respectively, solution) spaces and thus there is no clear, readily available path to the solution. Accordingly, “problem-solvers” often have difficulty determining appropriate representations through which to model the problems (and indeed their solutions). In short, that the problem definition evolves during design itself (Laing and Fraga, 1997) means that interface definitions (for process design) must accommodate the notion of undefined and uncertain quantities ab initio.
Broadly, there are two classes of approach (excluding hybrids): “top-down” where the solution is developed by progressing from abstract levels by adding more detail until a concrete design is realised, in the manner typified by Kirkwood et al (1988); “bottom-up” approaches which make use of an algorithmic techniques, for example, search over hyperstructures, such as our initial model, Jacaranda (Fraga et al 2000). Our focus here is on the latter (bottom-up) species where a well-defined—informally, sufficient structure and clarity is obtained in the definition—complete optimisation problem is first formulated and then solved. These are perhaps more accessible to the reader.
[image: image1.emf]State Problem Clarify Problem Identify Resource Classes Locate Resources Invoke/Obtain Solution

Revise/Restate Problem

[Further clarification needed]

[Further clarification needed]

[Reformulation needed]

Figure 1 A Model of Process Design

We begin our proposal with a (simple) model of the process of process design which we illustrate in Figure 1—cf. Stalker and Fraga (2007)—intended to reflect the top-level interaction of an engineer with a “generic” automated design tool. The engineer identifies or states the problem. He clarifies the problem (in some cases with assistance from the automated design tool) and identifies appropriate classes of resources for the problem: these two steps are interactive. Once sufficient clarity is achieved in the problem definition, actual instances of these resources are located: this may give rise to the need for further clarification, for example, should a particular resource be unavailable. Once the engineer has achieved desired clarity and assembled appropriate resources—we call this problem formulation—he invokes the appropriate solution procedure(s). As problem formulation may require various solutions before it can be fully achieved, the entire process may be re-visited (Laing and Fraga, 1997).

3. Interfaces for an Automated Process Design Tool

We propose set of interfaces for automated design tools. These interfaces derive from a consideration of the top level interaction of a user with an automated design tool, cf. Figure 1. While the “implementation” of each stage will vary greatly between tools, the generic activity of each is sufficiently general to use it as a basis to propose a set of interfaces. A note on the manner of exposition is perhaps in order. Our interest is in promoting discussion, thus rather than rendering an account of the interfaces in (say) CORBA IDL, we prefer a more intuitive approach and thus focus on the “objects” which carry the interfaces; though, naturally, we include summary reference to the actual methods in the interfaces. We begin with the following
:
1. IDesignProblemClassDefinition specifes a set of methods to define the problem.
2. IDesignProblemResources defines a set of methods to provide location of resources.
3. IDesignProblemReport defines a set of methods to choose report format.
4. IDesignProblem is the top level interface and provides mechanisms to set/get the particular instances of the above interfaces, as well as methods to initialise, etc.
[image: image2.emf]Problem

Problem

Report

Problem

Resources

Problem

Class

IDesignProblemClassDefinition

IDesignProblemResources

IDesignProblemReport

IDesignProblem

Problem

Problem

Report

Problem

Resources

Problem

Class

IDesignProblemClassDefinition

IDesignProblemResources

IDesignProblemReport

IDesignProblem

Figure 2 Top-Level Analysis of Problem Object
3.1. IDesignProblem
This is the top-level interface. It gathers together all of the information needed to formulate a well-formed problem definition under three categories. Essentially, we treat a design problem as a top-level object comprising three subobjects, as illustrated in Figure 2. As such, the IDesignProblem interface exposes only those get/set methods required for these subobjects. Each subobject corresponds to a category of information at the top-level and has its own interface, as detailed in the following subsections.
3.2. IDesignProblemClassDefinition

Through the problem class definition interface, we choose a problem type, from those available, e.g. separation, reaction, etc.; and we specify the solution procedure, in some cases including such detail as a limit on the occurrence of a particular unit operation, required presence of a particular operation, limits on iterations, tolerances, etc.
Accordingly, the IDesignProblemClassDefinition interface provides get methods to obtain interface definitions for the problem types and solution approaches supported by the instantiating system; and set methods to provide the “field values” for the appropriate objects implementing the necessary interfaces, thus defining the problem to be addressed. The problem class definition is (again) thought of as an object that is composed of two subobjects. We attach two interfaces to these two subobjects: we leave these empty to promote generality. In devising a problem class definition we introduce a notion of a “problem statement”: this is intended to represent the “first attempt” to describe the “problem” that we wish to solve. We include a concise problem statement as part of the IDesignProblemClassDefinition, which allows raw materials, desired products, ranking criteria and other information to be identified.
3.3. IDesignProblemResources

In implementation, this is the most substantial of the interfaces. We distinguish two species of resources typically needed to complete a problem definition: data and methods. We use these terms in a very general sense.
[image: image3.emf]Problem

Resources

Methods

Material

IDesignProblemComponent

IDesignProblemMethods

IDesignProblemData

Data

IDesignProblemResources

Problem

Resources

Methods

Material

IDesignProblemComponent

IDesignProblemMethods

IDesignProblemData

Data

IDesignProblemResources

Figure 3 Problem Resources Object

Data embraces items from the simple, such as universal constants or material properties, to the more complex, such as reducible superstructures, as the application demands; notwithstanding these are thought of as data structures (cf. abstract data types). Methods covers any resource which involves a notion of technique, reasoning or procedure. There are resources which intrinsically combine both species, for example, many properties of (chemical) components are state dependent and models implement both methods and data; cf. ICapeThermoMaterialObject interface specification (see www.colan.org). We illustrate the anticipated generic structure of objects implementing the IDesignProblemResources interface in Figure 3. Our model of the underlying objects for IDesignProblemResources implies three supporting interfaces: the IDesignProblemComponent, the IDesignProblemData and the IDesignProblemMethods. Again to promote generality, we leave these empty.
3.4. IDesignProblemReport
The IDesignProblemReport interface is intended to allow the user to query an implementing tool for reports offered and to choose from those available. The interface specifies get/set methods for each. We do not impose any stage for reporting, thus, a tool may provide reporting procedures only at the end or at a number of solution stages throughout. A supporting interface, IDesignReport, allows the user to specify the report format(s): again to promote generality, we leave the interface for this empty.
4. Algebraic Specification

Our work in the area of interface development is informed by the (formal) tools and techniques of “algebraic specification”. Algebraic specification signifies the use of algebraic tools in the development of software. A key insight of algebraic specification is to use algebras—an algebra is a set with associated operations which behave according to prescribed rules—as models of software artefacts. It applies algebraic methods to software development to create a formal framework in which software is developed progressively as a series of specifications each refining the previous, until (theoretically) executable software results. In the interests of brevity, we seek only to give an intuitive feel here and introduce a little terminology. We refer interested readers to appropriate texts, e.g., the work of Ehrig and Mahr (1985). Formally, a specification Spec = (S, Op, A) comprises of a set of sort names S identifying the entities in a system, a set of operation names Op indicating how these entities can be manipulated, and a set of rules (axioms) A describing how the different sorts and operations interact and interrelate. The set Sig = (S, Op) of sorts and operations is called a signature: it provides a vocabulary for the “area of interest”. The axioms provide the rules for using this vocabulary in a way which reflects its intended use, i.e. the intended “meaning” or more formally the semantics. Thus, for example, the same signature can be coupled with different sets of axioms to reflect different applications of it. More generally, we can refine, i.e. add to, or reduce each entry in Spec or even compose two or more specifications. However, we must recognise that in each case the models, i.e. the implementations are necessarily affected. The formal framework provided by algebraic specification allows such manipulations, especially the model of institutions (Goguen and Burstall 1992), and provides a systematic way in which to achieve this. It also provides for the various constraints to be modelled in the different forms of logic which derive from the statement of axioms in the form of equations, predicate calculus, etc. Importantly, there exist various high-level declarative languages, for example, ACT ONE (Ehrig and Mahr, 1985), which allow specifications to be “checked” using theorem provers. This is useful for interface specifications intended for specialisation or refinement, as it provides for incremental development, consistency checking, etc.
While space restrictions preclude a full account of our use of algebraic specifications, we seek to give a flavour; we defer full account to future work. We consider only signatures here; in application axioms are used to ensure that the vocabulary of the signature is used appropriately, and to also to encourage “exception handling” (rather than implementation failure). Consider, IDesignProblemResources gathers in a single place the resources needed to address a problem of interest. There are two species of resources—Data and Method—which are often combined to create a composite third, Material, which we can immediately identify as sorts for this interface: SRES = (Data, Method, Material) (cf. Figure 3). With each of these sorts, we identify appropriate operations for creation and when appropriate inspection (cf. constructors), e.g., OpRES = (createD: → Data, createM: → Method, createMat: → Material, …). We can extend OpRES to include checks for existence of each, say, exist: Object → Boolean, where we use the parameter Object to signify a particular object (of one the sort types) and even “name” the resource object. These would require Boolean and String sorts, thus, SRES is refined to SRES* = (Data, Method, Material, Boolean, String). Specific methods are subordinated to interfaces of the particular objects: i.e. each particular (subtype of a) sort object encapsulates appropriate operations with each species of data handled, including of course, the sort itself as an abstract data type. In the main proposal, we leave the interfaces for the sorts empty to promote generality. Formally, we handle this non-committal stance using notions of parametrised specifications (Ehrig and Mahr, 1990). Thus, we have a “generic” signature which is made concrete once the parameters are “actualised” (Ehrig and Mahr, 1990). For example, in our work with Jacaranda, Data embraces inter alia universal constants and appropriate discretisation parameters; moreover, we know that these are often assembled in lists, thus, each generates an assocated list, etc., e.g. SDAT = (Const, DParam, ConstList, DParamList, …). Thus, (roughly) Data is actualised by replacing Data (in SRES) by SDAT; formally, this is achieved by a specification morphism (Ehrig and Mahr, 1985) which also treats related operations and axioms. We treat Method and Material analogously. To make use of existing standards, one choice of actualisation for Material could be the CAPE-OPEN ICapeThermoMaterialObject interface definition (see www.colan.org), which would first be rendered as a specification tuple; similarly, one choice of actualisation for Method could be ICapeUnit. Relating more general CAPE-OPEN interfaces standards to an algebraic specification framework is part of our plan for future work.
5. Concluding Remarks
When proposing interfaces there is a tension which comes from the desire to be sufficiently general to be inclusive, yet to remain sufficiently concrete to be applicable. Indeed, this is the challenge when proposing interfaces for design. Interfaces are abstractions which identify classes of “objects”: the strength of an abstraction reflects how much we put into it. If an abstraction is too weak, then too many “objects” are included for it to properly discriminate among these and it becomes difficult to think of a useful representative; conversely, if an abstraction is too strong, it becomes so limiting that it functions as a blueprint. We appeal to the framework of algebraic specification to reduce this tension. Through it an abstract interface specification, even a vocabulary, can be viewed as a basis for systematic development.
We present the above in the spirit of debate to invite discussion and stimulate further work. Our proposal is a starting point. The abstractions are generic and should be specialised to provide a set of interface standards (for process design), which, though different in specialisation, can be proven to be consistent with a shared abstraction. The notion of “standards” presents difficulties in an area witnessing a diversity of tools. We concede that sets of interfaces are more appropriate than a single “gold standard”. Yet, standards promise much for automated design.
References

B Braunschweig, E Fraga, Z Guessoum, W Marquardt, O Nadjemi, D Paen, D Pinol, P Roux, S Sama, M Serra, I Stalker, A Yang, 2004, “CAPE Web Services: The COGents way”, In A P Barbosa-Póvoa & H Matos (Eds.), European Symposium on Computer Aided Process Engineering 14 (ESCAPE-14), Elsevier, 1021-1026.
N G Cross (Ed.), 1984, Developments in Design Methodology, Wiley, Chichester.
H Ehrig, B Mahr, 1985, Fundamentals of Algebraic Specification 1. Springer-Verlag.
H Ehrig, B Mahr, 1990, Fundamentals of Algebraic Specification 2. Springer-Verlag.

E S Fraga, M A Steffens, I D L Bogle, A K Hind, 2000, “An object oriented framework for process synthesis and simulation”. In M F.Malone, J A Trainham, B Carnahan (Eds), Foundations of Computer-Aided Process Design, Volume 323, 446-449, AIChE Symposium Series.

J A Goguen, R M Burstall, 1992, “Institutions: abstract model theory for specification and programming”, Journal of the ACM, 39(1):95–146.
R L Kirkwood, M H Locke, J M Douglas, 1988, “A prototype expert system for synthesizing chemical process flowsheets”, Computers Chemical Engineering, 12(4), 329–343.
D M Laing, E S Fraga, 1997, “A case study on synthesis in preliminary design, Computers and Chemical Engineering, 21, Suppl, S53-S58.
H A Simon, 1973, “The structure of ill-structured problems”, Artificial Intelligence, 4, 181-201.
I D Stalker, E S Fraga, 2007, “Enhancing Automated Process Design with Cognitive Agents, Distributed Software Components and Web Repositories”, Engineering Optimization, 39(5), 615-630.
A Yang, B L Braunschweig, E S Fraga, Z Guessoum, W Marquardt, O Nadjemi, D Paen, , D Pinol, P Roux, S Sama, M Serra, and I D Stalker, 2007, “A multi-agent system to facilitate component-based process modeling and design”, Computers and Chemical Engineering, In Press.
� We use the prefix “IDesign” to emphasise that we are defining interfaces for design purposes.

