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Abstract

Engineering design problems are usually characterized by the presence of many conflicting objectives that the design has to fulfill. Therefore, it is natural to look at many engineering problems as multi-objective optimization problems, with continuous and integer variables. The case is commonly encountered in several process systems engineering problems and such courses modules begin to make part of the curriculum of chemical engineering education.
The aim of the paper is to develop the teaching strategy used in the master-level program “EcoEnergy” given in ENSIACET (Toulouse, France) which presents the main concepts of mono and multi-objective genetic algorithms. The MULTIGEN algorithm is then applied to a gas turbine using natural gas as a fuel with a thermo-economic optimization taking into account both the maximization of an efficiency criterion and minimization of natural gas consumption, in order to reduce CO2 emissions. The students learn how to obtain and interpret Pareto fronts in multi-objective configurations.
Keywords: Optimization, Multi-objective, Genetic Algorithm, Thermo Economy.
1. Introduction
Optimization of linear, nonlinear, mixed integer linear and nonlinear problems is commonly encountered in several process systems engineering problems. Typical application examples include heat and mass exchange network synthesis, distillation-sequencing, reactors, utility systems, scheduling, planning and design of batch processes, supply chain optimization, … Several elegant deterministic mathematical programming techniques are usually taught in Process Systems Engineering Departments. Heuristics, meta-heuristics, and evolutionary techniques like adaptive random search, Simulated Annealing, Genetic Algorithms (GA) and Ant Colony techniques that mimic the process of natural selection (see the reference books of Holland, 1975 and Goldberg, 1989) are much less widespread in chemical engineering education. A Conventional GA basically involves five components: a chromosomal representation of potential solutions, an evaluation function mimicking the role of the environment, selection of solutions in terms of their current fitness, genetic operators that alter the chromosomes of children during reproduction and values of the algorithmic parameters (population size, probabilities of applying genetic operators, etc…). The main advantage of GAs over other methods is that a GA manipulates a population of individuals, and provides the possibility to develop a strategy in which the population captures the whole Pareto front in one single optimization run. This paper presents the teaching strategy used in the master-level program “EcoEnergy” given in ENSIACET (Toulouse, France) which overviews the main concepts of mono and multi-objective genetic algorithms. The course (12 h) is illustrated with a computer-aided education tool called MULTIGEN, designed as a library of algorithms with an Excel interface, which is presented in detail in section 2 of this paper. The main objective is to enable students to “get the knack” of using correctly stochastic methods, during 4 hours, learning them how to find the optima of some well-known mathematical bench problems, either in mono or in multi-objective cases, by performing a sensitivity analysis on GA specific parameters (mutation and crossover rates, generation number, population size, …). According to the Energy orientation topic of the “EcoEnergy” program, students work on a gas turbine optimal design problem using gas as a fuel (8 hours), with the didactic support of MULTIGEN. They use a thermoeconomic approach for maximizing electricity production and minimizing natural gas consumption, in order to reduce CO2 emissions. Pure economic concepts are also considered with the minimization of electricity production costs. The students obtain and interpret Pareto fronts in multi-objective configurations, and discover how industrial considerations can be taken into account for result analysis.
2. MULTIGEN environment description
2.1. MULTIGEN user-interface on Excel
Until now, genetic algorithms were not familiar tools for engineers, particularly in the multiobjective case, which constitutes the major part of engineering problems. MULTIGEN has a simple user interface, which is well-fitted to complex optimization constrained problems, on Excel workbooks, using a specific toolbar and worksheet, as shown in Fig. 1.
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Fig. 1 MULTIGEN user interface
The first column of the user interface (Fig. 1) contains keywords to locate the information in the Excel sheet: for instance, NPOPULATION represents the number of individuals in a population. Comments are also added to the cells to avoid user misunderstandings. An extensible zone makes it possible to define up to 255 criterions, variables, constraints, and additional data (not involved in optimization) from models. Mathematical problem formulation is performed very simply, just by establishing a link between criteria and constraint cells and the MULTIGEN interface, or by a direct formulation.
For stochastic methods such as GAs, the main objective is to ensure a safe communication between the mathematical model and the algorithm core of MULTIGEN. With a black box model, commonly used by engineers for design tasks, there is an uncertainty related to the current solution feasibility for a given set of decision variables, so it is possible that a black box model returns nothing! On Excel worksheets, when a function does not give a result, generally returning an error message, a numerical value is assigned to the non-computed criterion or constraint, to avoid an irreversible stopping of the GA running. The selected method consists in applying a high penalization value for the infeasible solutions. The automatic checking procedure returns error messages, using window dialog boxes, to indicate the error type and locus on the interface sheet with instructions to correct them.
2.2. Algorithm library content
Due to the mathematical problems diversity, it is well-known that a general algorithm able to solve all the problems perfectly does not exist. The only solution is to implement several algorithms, distinguishing them by their structure and by the variable category types (continuous, integer or binary) and collect them into a library: following this principle, five different algorithms are available in MULTIGEN (Table. 1).
Table 1. Algorithms available in the MULTIGEN library
	Algorithm
	Continuous variables
	Integer variables
	Binary variables

	NSGA-II
	X
	
	

	NSGA-IIb
	X
	
	

	NSGA-II MI
	X
	X
	

	NSGA-II MIB
	X
	X
	X

	NSGA-II MIB structural
	X
	X
	X


All the implemented algorithms are based on NSGA-II (Deb & al., 2002) structure, with different genetic operators included in the MULTIGEN genetic operator library. NSGA-II is an elitist multi-objective algorithm including population diversity management. Mixed Integer (MI) and Mixed Integer and Binary (MIB) problems can be also treated. MIB structural problems are based on particular rules, taking into account links between binary or integer variables (existence or not of components in a flow sheet) and continuous variables (temperature, pressure …).
3. Teaching Mono/Multiobjective Genetic Algorithm: from pure mathematical problem to gas turbine performance optimization

3.1. General description of training
The main objective of this training course is first to make students familiar with GA specific use for the resolution of pure mono/multiobjective mathematical problem, by studying the impact of parameters such as mutation and crossover rates and density probabilities, generation numbers and population sizes, on Pareto front quality. Then, after gaining practical experience with these numerical experiments, students are ready for tackling an engineering problem related to a technico-economic optimization of a gas turbine, as a concrete application in connection with the other “EcoEnergy” training courses.
3.2. GA parameters sensitivity analysis

Three mathematical problems are studied with the didactic support of MULTIGEN. Only one of these simple problems is presented here as an illustrative example (Eqn. 1.).
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( MACROBUTTON NoMacro Eqn. 1. )

Students have to perform several runs with a given range of variation for some parameters, i.e. crossover probability from 0 to 90%, mutation rate from 0 to 50%, with a population of 100 individual along 300 generations. A sensitivity study of these parameters is a quite difficult task for an inexperienced user, and only the general trends were studied. An increase in crossover probability improves the search mechanism but decelerates the convergence speed, whereas the mutation rate growth favours the capacity to extract the search from a local optimum. These tendencies are quite difficult to check by a simple observation. Without implementing quite sophisticated statistical indicators, only the impact of the generation number on the Pareto front can be easily detected (see Fig. 2).

[image: image3.wmf]0

1

2

3

4

5

6

7

8

9

10

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1,1

f1

f2

Generation 0

Generation 10

Generation 300


Fig. 2. Generation number impact on Pareto Front Evolution
3.3. Thermoeconomic optimization of a gas turbine

The thermoeconomic optimization of electricity production by a gas turbine (Fig. 3) is finally proposed, with thermodynamic and cost models of gas turbine taken from Silviera and Tuna (2003, Part I & II) with the following assumptions: steady state operational conditions, ideal gas model for air and combustion products, complete combustion reaction; adiabatic components except combustion chamber. Pressure losses for combustion chamber and air pre-heater are fixed, as well as isentropic efficiencies for compressor and turbine. The first task for the students was to build the thermodynamic model of the gas turbine using enthalpy balance for each component, and considering a polytropic transformation for both the compressor and turbine: the objective is to assess temperature, pressure and flow for each point in the gas turbine. The second step was to check the operational rates of the gas turbine.
Whatever the optimization criterion, the optimization variables are turbine pressure ratio, combustion gas flow rate, turbine outlet temperature and air-preheater efficiency.
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Fig. 3. Gas Turbine system flowsheet
3.3.1. Gas Turbine operational regime study
It is then interesting to study the optimal relation between fuel gas consumption and electricity production. Logically, the decrease in fuel consumption, in order to reduce CO2 and to minimize operating cost, implies a decrease in electrical production. An optimal operative condition set yet exists for a maximal electrical output. The objective was to find this set of solutions maximizing electrical output and minimizing the fuel flow rate. At first sight, the Pareto Front (Fig. 4) presents three distinct operative zones with the associated operating conditions presented in Table 2.
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Fig. 4. Optimal relation between fuel consumption and electric output.
Table  MACROBUTTON  AbaisserEnCorpsDeTexte 2. Operating conditions for optimal zones I, II & III 
	Zone
	Pr (Turbine)
	Tout (°C)
(Turbine)
	Preheater efficiency (%)
	Electrical Output (kW)
	Fuel (kg/s)

	I
	8 ( 8.05
	450 ( 597
	95
	498 ( 947
	0.06( 0.07

	II
	8.05 ( 15
	600
	95
	960 ( 26380
	0.07 ( 1.96

	III
	15
	600
	88.7 ( 0
	26460 ( 26640
	1.98 ( 2.16


3.3.2. Thermoeconomic optimization of the Gas Turbine

The final part consists in finding the optimal conditions, from the thermodynamics point of view, while considering jointly the economical aspect. The economic criterion is the annualized production cost of electricity (Eqn. 2).
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( MACROBUTTON  AbaisserEnCorpsDeTexte Eqn. 2. )

This objective function takes into account investment (I), maintenance and fuel costs, with an actualization rate of 8 % per year during 10 years, and an operational period of 8000 hours per year. Maintenance costs represent 6 % per year of capital cost. Two cases are studied: fixing air pre-heater efficiency at 95 % (case 1), and considering this efficiency as a variable (case 2) (see Pareto Fronts of both cases in Fig. 5).
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Fig. 5. Influence of Pre-Heater efficiency on production cost & fuel consumption
The optimization of case 2 provides solutions without air pre-heater, with fuel rate up to 2.03 kg/s (Fig. 5., right side), whereas the pre-heater efficiency is a variable. For an efficiency set at 95% (case 1), it can be pointed that production costs are multiplied by ten, with a fuel consumption lower than 1.98 kg/s. The important difference between these two cases implies that there is no interest in a pre-heater investment because the fuel purchase cost (0.01092 $/kWh) is too low: if a CO2 tax is imposed, the use of the pre-heater may be economically profitable. 
4. Conclusions

The teaching objectives of the master-level program “EcoEnergy” are twice. First, students learn how to use multiobjective GAs with the MULTIGEN environment, and to perform a parameter sensitivity analysis, only based on a simple observation of the Pareto front quality. The second step of the teaching course consists in applying the acquired knowledge on GAs to tackle a thermoeconomic problem related to a gas turbine. Two points of view are emphasized: an “industrial” one with a unique objective for production cost minimization (even if there is an increase in fuel consumption), and an “energy efficiency” one with the computation of the efficient relation between electrical output and fuel consumption, without any economic consideration. It is emphasized that metaheuristic methods as GAs, can handle complex engineering problems, particularly within a multiobjective perspective. The simplicity of MULTIGEN using enables students to focus on the interpretation of results analysis of the physical model of gas turbine.
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