
SOLVING TWO-STAGE STOCHASTIC MILP CHEMICAL

BATCH SCHEDULING PROBLEMS BY EVOLUTIONARY

ALGORITHMS AND ORDINAL OPTIMIZATION

Thomas Siwczyk∗1 and Sebastian Engell1

1Process Dynamics and Operations Group, Department of Biochemical and Chemical Engineering, Technische

Universität Dortmund, Dortmund, Germany

Abstract

Chemical batch scheduling is mostly solved for problems where all data is assumed to be known. While

this assumption makes scheduling problems much easier to handle, it cannot be upheld in reality. A

possible way to introduce uncertainties into scheduling problems is to use two-stage stochastic mixed-

integer linear programming where the uncertainties are represented by a discrete set of scenarios. With

an increasing number of uncertainties, the complexity of these models increases rapidly and makes it

impossible to solve them in a monolithic fashion in a reasonable amount of time. In this contribution we

present a new approach to solve chemical batch scheduling problems by combining a hybrid evolutionary

algorithm with a scenario decomposition technique from our previous work with the ideas of Ordinal

Optimization. The proposed heuristic replaces the exact MILP solution of the scenario problems by fast

non-exact solutions to perform a ranking (with small errors) of different promising first stage solutions.

Keywords

Two-stage stochastic programming, Scheduling, MILP, Heuristics, Ordinal Optimization

Introduction

Real-world scheduling problems often have to deal with

significant uncertainties about rush-orders, availability

of resources and varying demands (Harjunkoski et al.,

2014). These uncertainties are often neglected during

mathematical optimization due to the high computatio-

nal complexity. One possible option to introduce uncer-

tainty in the data into mathematical models is by using

stochastic programming (Birge and Louveaux, 2011),

where over multiple stages the uncertainty is being re-

solved and decisions have to be made in between. This

approach is often approximated by two-stage stochas-

tic programming which only distinguishes between two

stages. The first-stage describes decisions that have to

be made immediately and the second-stage models fu-

ture decisions for which additional information will be

available in the future.

A typical way to model scheduling problems is by

∗thomas.siwczyk@bci.tu-dortmund.de

using mixed-integer linear problems (MILP) monolithic

formulations (Harjunkoski et al., 2014), which can be ex-

tended to two-stage stochastic mixed-integer problems

(2S-MILP). Using the two-stage formulation standard

solvers can be used to optimize these problems under

uncertainty. However with an increasing number of un-

certain parameters these problems become very hard to

solve in a monolithic fashion. Therefore several algo-

rithms were introduced which make use of special pro-

perties of this formulation. Carøe and Schultz (1999)

use Lagrangian relaxation of the non-anticipativity con-

straints to decompose the problems into its scenarios.

A hybrid evolutionary algorithm was introduced by Till

et al. (2007), Garcia-Herreros et al. (2014) presented a

method using an improved L-shape method for solving

large 2S-MILPs from the field of supply chains.

In this contribution a new approach called EA+OO

is presented for solving computationally hard 2S-MILPs

for practical problems like chemical batch scheduling.



This approach extends the method of Till et al. (2007)

by incorporating ideas from Ordinal Optimization (Ho

et al., 2007). The new approach replaces exact solutions

for the scenario problems by fast non-exact solutions

while trying to maintain an overall good solution quality.

Two-Stage Stochastic Programming

A promising approach to introduce uncertain data into

mathematical optimization is 2S-MILP (Birge and Lou-

veaux, 2011). Different evolutions of the parameters in

the future are modeled in the form of a discrete set of

scenarios Ω = {1, . . . , |Ω|}. The probability of a scena-

rio ω to materialize in the future is denoted by πω. In

2S-MILP, distinctions are made between two types of

decisions: first-stage decisions and second-stage decisi-

ons. The first-stage decisions have to be implemented

now and have an influence on the future evolution and

the future decisions. These future decisions are repre-

sented by the second-stage, which consists of multiple

scenarios. The second stage decisions can be adapted to

the scenarios that materialize, they can be different for

each scenario. Hence, these decisions provide the option

of recourse in the future. A general formulation of a

2S-MILP can be written as follows:

min cTx+

Ω∑
ω=1

πωq
T
ω yω (1)

s.t. Ax ≤ b (2)

Tωx+Wωyω ≤ hω x ∈ X, yω ∈ Y, ω = 1, . . . ,Ω. (3)

In a MILP the domains of the decision variables X

and Y may contain (bounded) continuous and dis-

crete values. The constraints related to the first-stage

are depicted by (2) and the constraints for all scena-

rios (second-stage) are given by (3). While (2) only

contains first-stage decisions x ∈ X, the second-stage

contains additional second-stage decisions yω ∈ Y for

all scenarios ω ∈ Ω. The parameters of the first-stage

are represented by A and b, and the parameters for each

separate scenario ω ∈ Ω are given by Wω, Tω and hω.

The objective of these problems is to minimize the ob-

jective function (1), which consists of the costs for the

first-stage decisions and the expected costs for all sce-

narios, with the cost vectors c for the first-stage and qω

for the second-stage decisions in each scenario.

When designing algorithms for 2S-MILP, it is im-

portant to take into account that not for all problems

feasibility of the first-stage constraints (2) also implies

that a feasible completion in the second-stage exists. A

problem has relatively completely recourse (Birge and

Louveaux, 2011) if for each solution x which satisfies all

first-stage constraints Ax ≤ b, a solution y exists which

fulfills the constraints (3).

For each 2S-MILP a so-called expected value pro-

blem (EVP) can be formulated. In this variant of the

problem, the uncertain parameters of the second-stage

qω, hω, Tω and Wω are replaced by their expected values

h̄, T̄ and W̄ . The EVP is easier to solve than the corre-

sponding 2S-MILP due to the reduction of the number

of variables and the reduction from |Ω| scenarios to one

artificial scenario. The optimal solution of this problem

does not provide the optimal solution of the original

two-stage problem. Furthermore while the first-stage

decisions for EVP fulfill the first-stage constraints, there

might be no solutions for one or many scenarios which

satisfy all constraints of the second-stage.

Hybrid Evolutionary Algorithm for 2S-MILP

With an increasing number of uncertainties, 2S-MILP

become very hard to solve in a monolithic fashion. In

practice when good (not optimal) solutions are needed

in a reasonable amount of computation time, heuris-

tic approaches are useful. One such approach which

combines an evoluationary algorithm (EA) and stage

decomposition, was presented by Till et al. (2007) and

later improved by Tometzki and Engell (2011). The pro-

blem is decomposed into a master problem (MASTER),

which represents the first-stage problem, and into |Ω|
subproblems (SUBω) which represent each scenario of

the second-stage:

(MASTER): min
x
cTx+

Ω∑
ω=1

πωQω(x) (4)

s.t. Ax ≤ b, x ∈ X (5)

(SUB)ω: Qω(x) = min
yω

qTω yω (6)

s.t. Wωyω ≤ hω − Tωx ∀ω = 1, . . . ,Ω (7)

yω ∈ Y. (8)

For each candidate first-stage solution x∗ the value

Qω(x) has to be calculated by solving |Ω| subproblems

for each scenario problem separately by fixing the va-

lues of all variables x in (SUB)ω for all ω ∈ Ω to the

respective values of x∗. After solving all subproblems

the objective value for one candidate solution can be

calculated. However for x∗ there may not be a solution

to each scenario problem that fulfills the constraints of

the second-stage.



The method proposed by Till et al. (2007) uses

an hybrid evolutionary algorithm (HEA) to search for

good solutions for (MASTER), while an exact solver

for MILP (e. g. CPLEX) is used to solve the subpro-

blems (SUB)ω for each candidate solution. An EA is

a gradient-free search method which utilizes ideas from

the theory of evolution (Bäck et al., 1997). The first-

stage decisions are in this case regarded as the indivi-

duals and the objective function of (MASTER) is uti-

lized as the fitness function. Hence, the fitness evalu-

ation for each individual consists of fixing the values

of the first-stage solutions to the values represented by

an individual and then solving all subproblems (SUB)ω
separately for the individuals. Because an EA is a me-

taheuristic for unconstrained optimization problems, a

penalty function which measures the violation of con-

straints is introduced to tackle the constrained problem

(MASTER).

New Approach: EA+OO

The new EA+OO approach combines the HEA for 2S-

MILP from Till et al. (2007) with the main aspects of

Ordinal Optimization (OO). OO (Ho et al., 2007) is an

optimization method from the field of stochastic simula-

tion which can be also applied to deterministic problems

where the challenge is not the time that is needed for

simulations but the time spent to perform complex cal-

culations. OO is based upon two principles: “Order is

easier than Value” and “Nothing but the best is very

costly”. The first aspect of OO describes the fact that

it is easier to decide whether a solution A has a better

performance than a solution B, than it is to determine

the exact performance of both solutions. The second

principle proposes that it might be sufficient to search

for good enough solutions instead of searching for a sin-

gle optimal one. By combining these two principles, the

computational time to find adequate solutions for practi-

cal problems can be decreased significantly. Hence, the

focus of an OO-inspired optimization method shifts from

searching for the single optimal solution to obtaining a

set of solutions which are obtained by using a simpli-

fied model or or approximate solution. The ranking of

the solutions in this set will in some cases be erroneous,

but the set as a whole can be robust against perturba-

tions and contains one of the best solutions with a high

probability (Ho et al., 2007).

The main idea of EA+OO is to replace the costly

exact evaluations fex using an exact method to find the

optimal solutions of all subproblems (SUBω) in the HEA

by heuristic evaluations fheu which use a heuristic op-

timization method or a simplification of the problem to

solve the subproblems. A heuristic optimization method

does not necessarily find the optimal solution but is in

general faster than the exact evaluation and provides a

performance indicator for the individuals (first stage va-

riables). From a practical point of view, only a solution

for the first-stage of the problem will be implemented,

while the solutions for the subproblems of the second-

stage are only indicators for the quality of a first-stage

solution, exact solutions have to be found in the future.

In this contribution two different heuristic evaluation

methods are proposed. The first method fLPheu uses a LP-

relaxation for the second stage, allowing continuous va-

lues for all variables yω of the second-stage. The second

method fEVheu uses the EVP to measure the fitness of an

individual by fixing all first-stage decisions and using a

MILP-solver to obtain the objective value for the EVP

problem. However, the first tests using the EVP solution

as a performance measure showed a very bad overall per-

formance of the HEA due to providing too many indivi-

duals without a feasible completion in the second-stage

when evaluated exactly, while the rankings of feasible

first-stage solutions showed very small errors. Therefore

this evaluation method is extended by a test for fea-

sibility. The feasibility pump (FP) heuristic (Bertacco

et al., 2007) is used to quickly test whether an indivi-

dual induced a feasible solution for both stages of the

original problem. The feasibility pump is a fast method

which tests whether a MILP is feasible or not, but does

not provide good solutions with respect to the objective

value for the problem. If an individual x′ induces a fe-

asible solution for the original problem and of the EVP

the objective of the EVP fEV (x′) is used as the fitness

value for this individual. If x′ represents a feasible solu-

tion only for the EVP but not for the original problem,

the fitness value of x′ is set to fEVheu(x′) = fmax+fEV (x′)

where fmax is an upper bound of the cost function and

fEVheu(x′) = 2 · fmax +
∑
i max 0, Ai with Aix − bi being

the ith constraint of (MASTER) if x′ neither induces a

feasible first-stage solution for the original problem nor

for the EVP.

In the context of the HEA the purpose of the evalu-

ation of the first stage solutions is to obtain a fitness va-

lue for a given individual, which is then used to compare

two different solutions and creates a ranking of solutions.

While using a heuristic evaluation method to obtain the

order (with a small error) of different solutions fulfills



the first principle of OO, the second principle is realized

by searching for a set of top-s solutions, where s is a

problem-specific value. It is assumed that at least one

of these s solutions is of high quality, when evaluated

exactly.

Heuristic evaluations might evaluate feasible soluti-

ons as infeasible and vice versa. To deal with this pro-

blem the following procedure is suggested: At first the

HEA proposed by Till et al. (2007) is executed using

fheu and all feasible individuals are saved and ranked ac-

cording to their performance as measured by the heuris-

tic method. Afterwards the individuals are re-evaluated

according to the calculated ranking in an ascending or-

der until s feasible solutions have been found. This is

based on the assumption that only few re-evaluations are

necessary to find s feasible individuals and that at least

one of these individuals has a reasonably good solution

quality. By performing re-evaluations the real perfor-

mance of an individual is also calculated and the error

of the ranking is reduced.

Case-Study: Scheduling of an EPS-Plant

We tested the proposed method EA+OO using a real-

world application from the polymer industry. This sche-

duling problem concerns a plant for expandable polys-

tyrene (EPS) and was used before as a test case for the

HEA (Till et al., 2007; Tometzki and Engell, 2011).

The plant can produce two different types of EPS

(p ∈ {A,B}) in five different grain size fractions fp ∈
{1, . . . , 5} in a batch-wise fashion. The production of

the batches consists of three stages: preparation, poly-

merization and finishing stage. The preparation stage is

not restricting the production schedule, hence it is not

considered in the problem formulation. Each produced

batch contains one type of EPS, which in the finishing

stage is divided into different grain size fractions. The

distribution of the grain size fractions is controlled by a

recipe rp from a discrete set of recipes {1, . . . , 5}. The

production of one batch of polymer is assumed to take

the same amount of time, regardless of the choice of the

recipe. The schedule is created for several discrete pe-

riods i ∈ I = {1, . . . , imax}. The variables Ni,rp denote

the number of batches that are produced in period i

using recipe rp. For i ∈ I1 = {1, . . . , i1max} these vari-

ables represent the first-stage decisions that have to be

made immediately. The capacity of the plant is limi-

ted due to the polymerization stage, hence it can only

produce a maximum number of batches Nmax
i in each

period i ∈ I:∑
p

∑
rp

Ni,rp ≤ Nmax
i ∀i. (9)

The plant has two finishing lines for each type of EPS.

Each of them can only be operated when a minimal

amount of batches Fmin
p is being transferred to them in

each period. If the number of transferred batches drops

below a threshold, the finishing line has to be shut down

for at least two periods. After a restart it has to stay

operational for at least two more periods. In addition,

the capacity of the finishing line is limited to Fmax
p ba-

tches per period. In each period the the availability of

a finishing line is indicated by the binary variable zi,p.

These restrictions can be formulated as follows:

Fmin
p zi,p ≤

∑
rp

Ni,rp ≤ Fmax
p zi,p ∀i, p. (10)

The switching of the finishing line is modeled by the fol-

lowing constraints, where z0
p represents the initial state

of the finishing lines:

z0
p if i = 1

zi−1,p else

}
− zi,p − zi+1,p ≤ 0 ∀i, p (11)

z0
p if i = 1

−zi−1,p else

}
+ zi,p − zi+1,p ≤ 0 ∀i, p.. (12)

These constraints force the value of zi+1,p to be 0 if a

finishing line was shut down in period i and force the

value to be 1 in case of a start up in period i. The

variables wi,p are used to record changes of the state

of the finishing line. They are used in the objective

function to model the costs of startups and shutdowns

of finishing lines according to zi,p:

z0
p if i = 1

zi−1,p else

}
− zi,p ≤ wi,p ∀i, p (13)

−z0
p if i = 1

−zi−1,p else

}
+ zi,p ≤ wi,p ∀i, p. (14)

Besides the costs for switching on and off finishing lines,

the objective function also contains other costs, revenues

and penalties. To keep track of these values additional

variables and constraints are introduced. Ml,i,fp denotes

the amount of a product fp that is sold in period i with

a lateness of l. The parameter Bi,fp denotes the total

demand of product fp in period i and the amount of

demands that could not be satisfied after Lmax periods

and will be penalized. These unsatisfied demands are

modeled by the variable B−i,fp . It is also possible to



store batches that could not be sold in the same period

they were produced. The amount of stored products fp

is denoted by the variable M+
i,fp

and the initial storage

is given by the parameter M0
fp

. The development of the

production and the sales is represented by the constraint

(15) and the balance between the sales and the demands

is represented by (16):∑
l|i+l−1≤imax

Ml,i+l−1,fp = Bi,fp −B−i,fp ∀i, fp, p (15)

∑
j=1

∑
l

Ml,j,fp +M+
i,fp

(16)

=

i∑
j=1

∑
rp

ρfp,rpNj,rp +M+
i,fp

∀i, fp, p (17)

where ρfp,rp denotes the yield of the grain size faction

fp of recipe rp.

The optimization task is to maximize the profit of

the plant, it is modeled as a minimization problem. The

objective function (18) contains the profit from revenues

αl,i,fp per batch for satisfying customer demands, pen-

alties for supply shortage α−i,fp per unit of product, costs

for storing products α+
i,fp

per batch and the operating

costs for stage changes of the finishing lines γi,p and the

fixed production costs βi,rp per batch:

min−
∑
i,p

(∑
l,fp

α−i,fpMl,i,fp −
∑
fp

α+
i,fp

M+
i,fp
− (18)

∑
fp

α−i,fpB
−
i,fp
−
∑
rp

βi,rpNi,rp − γi,p
)
. (19)

The demands and the maximum capacity of the plant

are uncertain. The different evolutions of the demands

are denoted by the parameter Bη1i,fp and the different

evolutions of the maximum capacities are denoted by

Nmax,η2 where η1 = 1, . . . ,#η1 and η2 = 1, . . . ,#η2

denote single realizations. Hence #η1 · #η2 scenarios

are considered in the two-stage model.

Experimental Results

We used the EPS case-study to test the performance of

the EA+OO method in comparison to the original HEA

which uses the exact evaluation method fex. In Tomet-

zki and Engell (2011) it was shown that the HEA pro-

vides very good results for the EPS problem. The goal

of the experimental evaluation is to investigate whether

comparable results can be achieved with less computa-

tional effort using only heuristic evaluations. Another

question, which is of interest, is how many exact re-

evaluations are necessary to find the best solution of

one run.

The experiments were performed using the same

HEA configuration that was used by Tometzki and

Engell (2011), only the the calculation of the fitness

function was changed to the proposed methods fLPheu
and fEVheu . The methods were implemented using the

Java 8 programming language. The solver used for the

MILP- and LP-problems was IBM ILOG CPLEX 12.6.0.

For fEVheu the feasibility pump function implemented in

CPLEX was used to test for feasibility. The calculati-

ons were performed using a computer with an Intel(R)

Xeon processor at 2.50 GHz with eight cores and 64

GB RAM. We tested four parameter sets with 256 sce-

narios and four instances with 512 scenarios, using 100

generations as the termination criterion and also a time-

limit of 7.5 minutes for the first four and 15 minutes for

the second four instances. Evolutionary algorithms are

stochastic optimization methods, hence each optimiza-

tion was repeated 20 times. The results can be seen in

Figure 1. All individuals that were generated were re-

evaluated by fex. It can be observed that the heuristic

methods fLPheu and fEVheu can find solutions of even better

quality (after the re-evaluation with fex) than the ori-

ginal HEA using fex. Although fLPheu is 20 times faster

than fex when applied to an individual which induces

a feasible solution, the total time to complete 100 ge-

nerations was comparable due to the higher number of

individuals which are only feasible when fLPheu is used

as an evaluation method. The evaluation method fEVheu
needed only 1/3 of the time to complete 100 generati-

ons and was much faster than fLPheu and fex. Using the

Wilcoxon rank sum test (Derrac et al., 2011) it could

be shown that the EA+OO approach using fEVheu perfor-

med significantly better (with a level of significance of

α = 0.01) than the original approach. While the per-

formance using fEVheu is significantly better than using

only fex, it cannot be determined which of the heuristic

evaluation methods performs better over all cases. A

reason for the better performance of the OO-based ap-

proach might be the difference in the calculation of the

fitness value in the case of an individual which induces

a solution which fulfills all first-stage constraints but vi-

olates constraints of the seconds-stage. For this group

of individuals the original approach uses a fixed value as

a fitness value, while fEVheu and fLPheu calculate different

values for these individuals. Due to the LP-relaxation,

fLPheu provides different fitness values for individuals that

are not feasible when being evaluated with fex. In the

case of fEVheu the value of the EVP, which is added to

an upper bound of the cost function, is used to indicate



LP EV EX

−2
1

−2
0

−1
9

−1
8

−1
7

−1
6

−1
5

−1
4

CP
LE

X 
24

h

256 #1 Time

LP EV EX

−2
1

−2
0

−1
9

−1
8

−1
7

−1
6

−1
5

−1
4

CP
LE

X 
24

h

256 #1 Gen.

LP EV EX

−2
1

−2
0

−1
9

−1
8

−1
7

−1
6

−1
5

CP
LE

X 
24

h

256 #2 Time

LP EV EX

−2
1

−2
0

−1
9

−1
8

−1
7

−1
6

−1
5

CP
LE

X 
24

h

256 #2 Gen.

●

●

LP EV EX

−2
1

−2
0

−1
9

−1
8

−1
7

−1
6

−1
5

CP
LE

X 
24

h

256 #3 Time

LP EV EX

−2
1

−2
0

−1
9

−1
8

−1
7

−1
6

−1
5

CP
LE

X 
24

h

256 #3 Gen.

●

●

●

LP EV EX
−2

1
−2

0
−1

9
−1

8
−1

7
−1

6

CP
LE

X 
24

h

256 #4 Time

LP EV EX

−2
1

−2
0

−1
9

−1
8

−1
7

−1
6

CP
LE

X 
24

h

256 #4 Gen.

●
●

LP EV EX

−2
0

−1
9

−1
8

−1
7

−1
6

−1
5

−1
4

CP
LE

X 
24

h

512 #1 Time

LP EV EX

−2
0

−1
9

−1
8

−1
7

−1
6

−1
5

−1
4

CP
LE

X 
24

h

512 #1 Gen.

●
●

●

LP EV EX

−2
1

−2
0

−1
9

−1
8

−1
7

−1
6

−1
5

−1
4

CP
LE

X 
24

h

512 #2 Time

●

●

LP EV EX

−2
1

−2
0

−1
9

−1
8

−1
7

−1
6

−1
5

−1
4

CP
LE

X 
24

h

512 #2 Gen.

LP EV EX

−2
1

−2
0

−1
9

−1
8

−1
7

CP
LE

X 
24

h

512 #3 Time

LP EV EX

−2
1

−2
0

−1
9

−1
8

−1
7

CP
LE

X 
24

h

512 #3 Gen.

LP EV EX

−1
9

−1
8

−1
7

−1
6

−1
5

−1
4

−1
3

CP
LE

X 
24

h

512 #4 Time

●

LP EV EX

−1
9

−1
8

−1
7

−1
6

−1
5

−1
4

−1
3

CP
LE

X 
24

h

512 #4 Gen.

Figure 1. Results for all instances

the performance of an individual. These aspects seem

to improve the overall optimization process.

All candidate individuals were re-evaluated to rese-

arch how many re-evaluations were necessary to find the

best solution of the optimization run. It could be shown

that for fLPheu in over 75% of the cases it was enough to

find the first feasible solution to find the best solution

of the entire run and in over 90% of all runs 200 re-

evaluations or less were necessary to find the best indivi-

dual of the respective run, which is equal to the amount

of evaluations during four generations of the HEA. In

the case of fEVheu in over 95% of the runs it was sufficient

to re-evaluate up to ten individuals to find the best in-

dividual of a run.

Conclusions

This contribution proposed a modification to the HEA

(Till et al., 2007; Tometzki and Engell, 2011) for 2S-

MILP based on the ideas of OO. The new approach

EA+OO was tested using a real-world case-study from

the field of chemical batch scheduling, The proposed

method replaces computationally expensive exact eva-

luations of the second-stage solutions by approximate

evaluations and provided significantly better results for

the EPS problem than the original approach in all in-

stances.

Acknowledgments

This research was funded by DFG in the context of the

RTG 1855: Discrete Optimization of Technical Systems

under Uncertainty at TU Dortmund.

References

Bäck, T., Fogel, D. B., and Michalewicz, Z., editors (1997).

Handbook of Evolutionary Computation. IOP Publishing

Ltd., Bristol, UK, UK, 1st edition.

Bertacco, L., Fischetti, M., and Lodi, A. (2007). A feasi-

bility pump heuristic for general mixed-integer problems.

Discrete Optimization, 4(1):63–76.

Birge, J. R. and Louveaux, F. (2011). Introduction to sto-

chastic programming. Springer Series in Operations Re-

search and Financial Engineering. Springer Science, New

York.

Carøe, C. C. and Schultz, R. (1999). Dual decomposition

in stochastic integer programming. Operations Research

Letters, 24(1-2):37–45.

Derrac, J., Garćıa, S., Molina, D., and Herrera, F. (2011). A

practical tutorial on the use of nonparametric statistical

tests as a methodology for comparing evolutionary and

swarm intelligence algorithms. Swarm and Evolutionary

Computation, 1(1):3–18.

Garcia-Herreros, P., Wassick, J. M., and Grossmann, I. E.

(2014). Design of resilient supply chains with risk of faci-

lity disruptions. Industrial & Engineering Chemistry Re-

search, 53(44):17240–17251.

Harjunkoski, I., Maravelias, C. T., Bongers, P., Castro,

P. M., Engell, S., Grossmann, I. E., Hooker, J., Méndez,

C., Sand, G., and Wassick, J. (2014). Scope for industrial

applications of production scheduling models and solution

methods. Computers & Chemical Engineering, 62:161–

193.

Ho, Y.-C., Zhao, Q.-c., and Jia, Q.-S. (2007). Ordinal op-

timization: Soft optimization for hard problems. Springer

US, New York, NY.

Till, J., Sand, G., Urselmann, M., and Engell, S. (2007). A

hybrid evolutionary algorithm for solving two-stage sto-

chastic integer programs in chemical batch scheduling.

Computers & Chemical Engineering, 31(56):630 – 647.

Tometzki, T. and Engell, S. (2011). Systematic initialization

techniques for hybrid evolutionary algorithms for solving

two-stage stochastic mixed-integer programs. IEEE Tran-

sactions on Evolutionary Computation, 15(2):196–214.


