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Abstract

Modeling clotting dynamics that occur during a thromboelastogram (TEG), a functional ex-vivo assay

of coagulation, has the potential to provide useful clinical insights. Taking a systems view, the ex vivo

system (TEG) dynamics are modeled without explicitly representing the complex in vivo clotting cascade.

The model utilizes reaction engineering principles represented as ordinary differential equations (ODEs),

which are solved in MATLAB ( c©2016, The Mathworks Inc.) or Python. The model structure uses linear

kinetics, except for the thrombus growth rate, which has a quadratic dependence on activated platelets.

Estimated parameters include the initial platelet count, platelet activation rate, thrombus growth rate,

and lysis rate (P0, k1, k2, and k3, respectively). Parameter estimation via nonlinear least-squares op-

timization of model predictions against clinical data used PYOMO 4.3 with the IPOPT solver. For 60

sample TEG tracings, the model yielded an average relative error of 6.42%, which demonstrates a simple

mathematical description of coagulation is able to capture TEG data. Multi-parameter distributions

demonstrates patient variability, suggesting it may be possible to identify patient endotypes from these

distributions. A model-informed endotyping of patient-specific coagulopathic state could guide clinicians

in selecting individualized treatment decisions leading to improved patient outcomes.
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Introduction

An impairment of the coagulation process (coagulopa-

thy), especially in the acute response to trauma, in-

creases the relative risk of death by 4.6 times in severely

injured patients (Maegele et al., 2011). Furthermore,

surviving patients with early onset coagulopathy more

frequently develop multiple organ failure(Maegele et al.,

2007). The variability associated with hemostasis, the

process of stopping blood loss, is important for under-

standing the many biological phenotypes (observable

traits) and their underlying endotypes (mechanisms)

that lead to these severe clinical differences. These endo-
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types may prove important for informing medical deci-

sions including determining which state of coagulopathy

a patient is experiencing and what kind of treatment

to administer after trauma (Liou et al., 2014). Thus,

modeling coagulation of blood at an appropriate reso-

lution could provide individual endotyping from pheno-

typic data, and ultimately improve clinical outcomes.

One assay for analyzing the state and functionality

of blood hemostasis is the thromboelastogram (TEG),

which analyzes a 340 µL sample of blood mixed with

clotting factors. The device stand oscillates, simulat-

ing sluggish blood flow and naturally driving thrombus

formation (clotting), which is measured by the displace-

ment of a torsion pin (Hae, 2007). This assay can inform

patient coagulopathic state quickly after entry into the



clinic. The key processes in the clotting cascade ob-

served during a TEG are platelet activation, thrombus

(clot) growth, and lysis of the clot. Modeling of the de-

vice response, and also the biological processes, can be

accomplished at a variety of scales based on the phys-

ical and biochemical interactions of the components in

blood (plasma, blood cells, platelets, clotting factors,

etc.) that are activated during the assay. Currently the

dynamics of this complex, multi-scale biological system

are not entirely understood.

The clotting cascade has been modeled at a vari-

ety of scales (Xu et al., 2010; Bannish, 2014). Drawing

upon the work of Jones and Mann (1994), complex high-

order models of the extrinsic and extrinsic pathways in-

cluding the various factors and physiological particles

and molecules have been constructed (Xu et al., 2010;

Anand et al., 2008; Lo et al., 2005). The application

of such a model to individual patient TEG response is

complicated by the number of available parameters and

the inability to easily and uniquely map them individ-

ually to the impact they have on a TEG tracing. In

contrast, a lumped model may not capture the full bio-

logical complexity of the system, but may still provide

clinically-useful information about individuals through

its ability to capture measurements and differentiate be-

tween patients and patient-populations. This can be ap-

proached on parametric grounds or through competing

model structures. Such is the focus of this work, where

a low-order model of TEG response is constructed and

used to capture individual patient data from clinical tri-

als.

Model Structure

The TEG response model was developed from the

following simplified reaction scheme under the assump-

tion that all reactions are irreversible. Conceptually,

platelet activation (1) is followed by thrombus forma-

tion (2), which is ultimately broken down through the

process of lysis (3).

P → Pa (1)

Pa → T (2)

T → L (3)

This reaction scheme is easily converted to the ordi-

nary differential equation (ODE) representation (4)-(7),

by treating the TEG device as a batch reactor. The

states include free platelets, P (t), activated platelets,

Pa(t), thrombus state, T (t), and lysed thrombus, L(t).

The final state, while not a measurable molecule, per

se, provides an integrated measure of total lysis, and

thereby the lysis rate.

dP (t)

dt
= −k1P (t) (4)

dPa(t)

dt
= k1P (t)− k2Pa(t)2 (5)

dT (t)

dt
= k2Pa(t)2 − k3T (t) (6)

dL(t)

dt
= k3T (t) (7)

Estimated parameters include the initial platelet

number P (0), platelet activation rate (k1), thrombus

growth rate (k2), and lysis rate (k3). The objective func-

tion was sum of squared error between clinical patient

data and the thrombus state T (t).

Before optimization, direct simulation was imple-

mented in MATLAB ( c©2016, The MathWorks, Nat-

ick, MA) using the ode15s solver. Parameter ranges

were set prior to optimization by using the SIM-

BIOLOGY package in MATLAB. This pharmacoki-

netic/pharmacodynamic modeling package allows for di-

rect integration of model Eqs. (4)-(7) from the reac-

tion scheme in Eqs. (1)-(3). Simbiology allows for pa-

rameter sweeps over orders of magnitude, with an easy

interface to view the effect of these parameter values

on the clinically-measurable thrombus state. Initial

guesses for parameter estimation as well as the ranges

determined for each parameter, are shown in Table 1.

Table 1. Initial guesses and search ranges for model

parameters as determined from MATLAB’s SIMBIOL-

OGY parameter sweeps. Note that the thrombus state

must have units of mm to relate back to the TEG.

Parameter Initial Guess Range Units

P0 max(data) 0 - 70 Scalar

k1 0.005 1e-7 - 1e0 s−1

k2 0.04 1e-7 - 1e0 s−1mm

k3 0.00004 1e-7 - 1e-1 s−1

Data Analysis Methods

Trauma data was collected from 20 patients from

one University of Pittsburgh clinical trial, the Study of

Tranexamic Acid During Air Medial Prehospital trans-

port trial (STAAMP). All TEG data were collected as a

rapid TEG from Haemoscope’s TEG 5000. Rapid TEGs

were collected for each patient at approximately 0, 12,

and 24 hours after enrollment in the clinical trial, re-



sulting in a total n=60 TEGs. Each TEG is composed

of displacement measurements taken every five seconds

for a total of approximately 4500 seconds. To map the

raw measurement onto a traditional TEG displacement

envelope, raw values from the device are divided by 4

and plotted twice: once as raw/4, and a second time

reflected across the time axis. The model developed

strictly simulates the positive portion of the TEG, since

the bottom half is a simple reflection in the x-axis.

From the model structure described, parameter es-

timation and model solution were accomplished using

a backward-difference formulation implementing the In-

terior Point OPTimizer, IPOPT solver (Wachter and

Biegler, 2004). For this, the model was constructed in

Python 3.5.1 using the PYthon Optimization Modeling

Objects (PYOMO) 4.3 package (Hart et al., 2011, 2012)

linked to IPOPT. Together the result minimizes the sum

of squared error (objective function) between the data

and the model at every time point. The resulting opti-

mal values were recorded. The parameter bounds were

found as stated in Table 1.

Markov Chain Monte Carlo Analysis

Parameter estimation, using the data from

STAAMP, was accomplished using an Affine-Parallel

Tempering Markov Chain Monte Carlo (APT-MCMC)

algorithm (Zhang et al., 2015). For plotting parameter

correlations for each data set, the last ten thousand

sets of parameter vectors (of the one hundred thousand

total) were extracted. The parameter distributions

returned by APT-MCMC were further used to assess

identifiability of parameters, possible interparameter

correlations, and to establish the manifestation of

disease endotypes.

APT-MCMC is a Markov Chain Monte Carlo

(MCMC) algorithm. MCMC algorithms employ ran-

dom walks along the objective function surface to search

for minima. While less efficient than gradient-based

solvers, MCMC algorithms are better able to search

multi-modal surfaces where many minima exist. APT-

MCMC uses the Metropolis-Hastings algorithm to lo-

cate, explore, and escape these minima. APT-MCMC

also employs additional add-ons to improve search effi-

ciency (Zhang et al., 2015). Parallel tempering, with

information transfer between chains at different tem-

peratures, employs an objective function surface scaling

that facilitates breadth search (high temperatures that

flatten the objective function surface) and depth search

(lower temperatures exploring identified wells). Within

each temperature is an ensemble of samplers with affine

invariance (Goodman and Weare, 2010). This technique

uses multiple walkers to explore the objective space with

greater efficiency.

Results

The model in Eqs. (4)-(7) was fit to individual pa-

tients from the STAAMP trial. A simplified form of the

model, using a linear dependence on Pa for thrombus

formation rate, versus the quadratic dependence in (5),

was also evaluated. On a test data set of 10 TEG trac-

ings, a quantitative comparison between the two models

showed the nonlinear model provided an 18.8 % decrease

in sum-of-squared error (model prediction vs. data).

As a result, it appears the quadratic dependence that

yields a faster dynamic growth of the thrombus state,

or rapid thrombus formation, is superior. Ultimately,

this is consistent with robustness in biology – this pro-

cess is responsible for stopping bleeding and is critical

to organism survival.

Individual Patient Fits

When tested against the full data set (20 patients, 3

time points per patient), the model results in an average

relative error of 6.42 percent (average SSE: 174 mm2),

quantifying the ability of the model to capture individ-

ual TEG data. An example TEG tracing set for a single

patient over 3 time points is shown in Figure 1.

Figure 1. A representative set of TEG tracings for one

STAAMP patient with (a) the raw data at all time-

points, (b) the difference between the data and the model

estimate.



Figure 2. Parameter distributions from APT-MCMC model fits to TEG data for 20 patients at 0 hours (left), 12

hours (middle) and 24 hours (right). The last 10,000 parameter vectors from APT-MCMC fitting were used for

each patient at each time point.

Figure 1(a) shows a typical set of patient TEG trac-

ings at every time point. Thrombus forms quickly, lead-

ing to a peak in displacement amplitude between 1000

and 1500 seconds. Over time, the clot then breaks down

via lysis, leading to a decrease in the displacement am-

plitude of the TEG. Figure 1(b) shows the residual error

between the data and the fit of the model at each time

point. For this patient, the model does not display an

error at any time point of greater then approximately 1

mm. The model captures the data after the maximum

amplitude is reached with minimal error. The residu-

als during the initial dynamic region is higher, suggest-

ing a future improvement in model structure targeting

platelet activation and thrombus growth.

Relating these fits to parameter values in the model

is important for endotyping or identifying changes in pa-

tient coagulopathic state over time. The temporal trend

in the TEGs in Figure 1(a) is that the maximum am-

plitude increases from the 0 hour to 12 hour to 24 hour

time-points. This is generally captured by increases in

the P0 parameter over time. Additionally, the lysis rate

is increasing slightly (via the larger difference between

maximum and final values). The increase in k3 captures

this dynamic difference. Finally, the initial clotting dy-

namics, observed as the rising slope, increases in speed

from 0 to 12 hours and then slightly increases again at

the 24 hour time point. In the parameter estimation,

this is quantified as k1 increasing from 0 to 12 hours,

and then staying the same between the 12 hour and 24

hour time-points. For this individual patient the model

parameters for the three TEG fits at each time point are

shown in Table 2.

Table 2. Parameter estimates for the representative pa-

tient at all three time-points.

Parameter 0 hours 12 hours 24 hours

P0 30.7 32.0 33.9

k1 (s−1) 0.0034 0.0046 0.0043

k2 (mm× s−1) 0.0055 0.0020 0.0016

k3 (s−1) 1.38e-5 1.84e-5 2.21e-5

Population Fits using APT-MCMC

The model was fit to each data set using APT-

MCMC. From the population analysis in Figure 2, the

model parameters all appear identifiable from the clini-

cal data.

Population histograms for all fits at each time point

show easily identifiable maxima. Bimodalities appear

in k2 and P0, particularly later in the time-course for

both parameters. These latter results suggest the pos-

sible development of subpopulations. A separation in

the population further supports the identification of pa-

tients that differ in their clinical prognosis or outcome,

thereby motivating the study of patients based on their

endotype, which could be identified in model parameter

space.



Figure 3. Parameter-parameter correlation plots from all model fits (last 10,000 parameter vectors per patient)

at time = 0 hours (a) and time = 24 hours (b). Comparisons of interparameter correlations across time points

can be made by reflecting across the diagonal of the figure. In (a), y-axis values are given by the row (in order

downward, ln(k1), ln(k2), ln(k3), and P0), x-axis is by column (same order as rows). Axes on the 24-hour plots

(b) have been flipped (plots reflected in the unity line) to allow direct optical comparison with the time = 0 hours

plots in (a).

Interparameter Correlations

APT-MCMC facilitates the study of parameter cor-

relations in a probabilisitic setting. Of particular inter-

est is the ability to use apparent parameter correlations

to either motivate model reduction/simplification by re-

ducing the parameter space or to further establish endo-

typic differences that manifest in the parameter space.

This analysis employs two-dimensional parameter plots

(for each combination of parameters), as shown in Fig-

ure 3. A linear correlation between ln(k1) and ln(k2)

is observed at the 0 hour time point, and the relation-

ship between ln(k2) and P0 may also be linear at the 0

hour time point. At this same time point, a nonlinear

correlation between ln(k3) and P0 is also evident. By

the 24 hour time point, the ln(k1) vs. ln(k2) correla-

tion has become multimodal in parameter space. The

ln(k3) vs. P0 correlation remains, but has separated

into two subpopulations, and the ln(k2) vs. P0 corre-

lation has likewise been lost as a subpopulation arises.

These subpopulations may indicate the manifestation

of clinically-relevant endotypes within the population

that can inform clinical outcome and may guide ther-

apy. Upon completion of the STAAMP trial we will be

able to discern whether we are observing temporal and

interpatient changes that are established by therapeu-

tic decision-making a priori (patients in STAAMP are

randomized to receive, or not receive, tranexamic acid

during transport), or as a result of treatment indepen-

dent of the initial intervention (which would indicate

potential endotypes within the population).

Conclusions

A low-order dynamic model of coagulation, as mea-

sured by TEG, was developed. The model is able to

fit 20 individual patients across a clinical time-frame of

24 hours, by adjusting 3 rate parameters and a scaled

version of the initial platelet count. Analysis via APT-

MCMC indicates that parameters are identifiable from



TEG data, though nonlinear correlations between pa-

rameters may exist. Furthermore, when model fits are

observed in parameter space, subpopulations manifest

over time and interparameter correlations change. The

effect of early interventions, and the emergence of en-

dotypes within the population, will be evaluated as pa-

tient data are unblinded. Increases in model complex-

ity, to better capture interpatient differences (e.g., sex,

race, body weight, trauma severity, other clinical mea-

surables), are the topic of ongoing work.
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