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Abstract

UV flash processes, also referred to as isoenergetic-isochoric flash processes, occur for dynamic simula-

tion and optimization of vapor-liquid equilibrium processes. Dynamic optimization and nonlinear model

predictive control of distillation columns, certain two-phase flow problems, as well as oil reservoirs with

significant compositional and thermal effects may be conducted as dynamic optimization of UV flash

processes. The dynamic optimization problem involving a UV flash problem is formulated as a bilevel

optimization problem. This problem is solved using a gradient based single-shooting method. The gra-

dients are computed using the adjoint method and different off-the-shelf optimization software (fmincon,

IPOPT, KNITRO, NPSOL) are used for the numerical optimization. Computational results are reported

for a flash process involving benzene, toluene and diphenyl. The computational experiments demonstrate

that the optimization solver, the compiler, and high-performance linear algebra software are all important

for efficient dynamic optimization of UV flash processes.
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1 Introduction

Dynamic optimization of vapor-liquid equilibrium

(VLE) processes are used in operation and control of

distillation columns, certain two-phase flow problems,

and oil reservoirs with significant thermal and composi-

tional effects. Therefore, such processes require efficient

computational methods for dynamic optimization of UV

flash processes. The UV flash problem is also known as

the isoenergetic-isochoric flash problem or the UVn flash

problem. UVn refers to specification of the internal en-

ergy, U , the total volume, V , and the total material

amount (moles), n. The second law of thermodynamics,

i.e. the entropy of a closed system is maximal, is used

to determine the equilibrium composition with U , V ,

and n specified (Michelsen, 1999). The UV flash prob-

lem is different from the more common PT flash prob-

lem that occurs in steady-state optimization problems.

However, it can be demonstrated that the PT flash prob-

lem with additional constraints on the internal energy,

U , and the volume, V , is equivalent to the UV flash
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problem. Algorithmic oriented approaches to dynamic

optimization of VLE processes use a nested method in

which PT flash problems are solved in the inner loop,

and outer loops converge the internal energy, U , and vol-

ume, V , to their specified values. Such approaches suffer

from computational inefficiency and complicated com-

putations for the gradients. Alternatively, simultane-

ous methods (Biegler, 2010), multiple- or single-shooting

methods (Capolei and Jørgensen, 2012) may be used for

dynamic optimization of UV flash processes. In this

paper, we present a novel algorithm for dynamic opti-

mization of UV flash processes. The algorithm is based

on the single-shooting method and an adjoint method is

used for computation of the gradients (Jørgensen, 2007).

The numerical integration of the semi-explicit index-1

differential algebraic (DAE) system is the key compu-

tational operation in the single-shooting method. We

report numerical results for a three-component dynamic

UV flash as well as the computational performance for

implementations in C and Matlab using different opti-

mization software, different linear algebra software, and

different compilers.



2 Optimal Control Problem

We consider the following optimal control problem

(OCP)

min
[x(t);y(t);z(t)]

tf
t0
,{uk}k∈N

φ = φ
(

[y(t);u(t); d(t)]
tf
t0

)
(1a)

subject to

x(t0) = x̂0, (1b)

G(x(t), y(t), z(t)) = 0, t ∈ T , (1c)

ẋ(t) = F (y(t), u(t), d(t)), t ∈ T , (1d)

u(t) = uk, t ∈ [tk, tk+1[, k ∈ N , (1e)

d(t) = d̂k, t ∈ [tk, tk+1[, k ∈ N , (1f)

{uk}k∈N ∈ U , (1g)

where the objective function is in Lagrange form

φ =

∫ tf

t0

Φ(y(t), u(t), d(t))dt. (2)

x(t) is the state vector, y(t) is a vector of algebraic vari-

ables, and z(t) is a vector of adjoint algebraic variables.

The estimated initial states, x̂0, and the predicted dis-

turbances, {d̂k}k∈N , are parameters in the optimization

problem. [x(t); y(t); z(t)]
tf
t0 is a vector of dependent de-

cision variables, whereas {uk}k∈N are independent de-

cision variables. The time interval is T = [t0, tf ] and

the control indices are N = {0, 1, . . . , N − 1}.
The OCP (1) includes algebraic constraints (1c) and

differential equations (1d). The algebraic constraints

(1c) are formulated such that they can be used to model

equilibrium processes, e.g. VLE processes. Equilib-

rium processes can be formulated as optimization prob-

lems and (1c) can represent the Karush-Kuhn-Tucker

(KKT) conditions of these optimization problems. The

differential equations (1d) are obtained from conserva-

tion principles and the states, x(t), represent the con-

served quantities. The right-hand-side in (1d) depends

on the algebraic variables, y(t), which are implicit func-

tions of the states through the algebraic constraints (1c),

i.e. y(t) = y(x(t)). By this statement, we assume that

given x(t), it is possible to compute y(t) = y(x(t)) and

z(t) = z(x(t)) by solving G(x(t), y(t), z(t)) = 0. This is

true for the VLE processes considered in this work. We

define the single shooting objective ψ by

ψ = ψ({uk}k∈N ; x̂0, {d̂k}k∈N ) =

{
φ : (1b)-(1f)

}
. (3)

Given {uk}k∈N , x̂0, and {d̂k}k∈N , ψ is computed as the

objective function, φ, obtained by integrating (2) using

t
t0 t1 tN

x0

Cont. states x(t)

u0
u1

uN−1
Disc. controls uk

Figure 1. Sketch of the single shooting principle. The

controls, u(t), are discretized in time and the continu-

ous states, x(t), are considered functions of the controls.

The objective is evaluated by solving the semi-explicit

DAEs for a given initial value, x0, and a given set of

controls, {uk}N−1k=0 .

the solution of (1c)-(1d) with x(t0) = x̂0, u(t) = uk for

t ∈ [tk, tk+1[ and k ∈ N , and d(t) = d̂k for t ∈ [tk, tk+1[

and k ∈ N , i.e. (1b) and (1e)-(1f). Figure 1 illustrates

the discretization of the inputs, u, and the numerical

computation of the continuous states, x. This is the

principle in the single-shooting method and the princi-

ple that is used for computation of ψ. With ψ defined

by (3), the OCP (1) with the objective function (2) can

be expressed as the finite dimensional constrained opti-

mization problem

min
{uk}k∈N

ψ = ψ
(
{uk}k∈N ; x̂0, {d̂k}k∈N

)
, (4a)

s.t. {uk}k∈N ∈ U . (4b)

The set U is often a polyhedron such that the con-

straints (4b) can be expressed by umin ≤ u ≤ umax and

bl ≤ Au ≤ bu where u = [u0; u1; . . . ; uN−1]. Gradient-

based optimization algorithms for solution of the nonlin-

ear program (4), and thus the optimal control problem

(1), require evaluation of the objective function, ψ, and

the gradients, {∇uk
ψ}k∈N . These computations involve

numerical solution of the differential-algebraic equations

(DAE), (1c) and (1d), along with computation of the in-

tegral (2).

2.1 Equilibrium Constraints

The equilibrium processes that are considered in this

work can be described as the solution to a parametric

equality constrained optimization problem in the follow-

ing form

min
y

f(y) (5a)

s.t. g(y) = x, (5b)

h(y) = 0. (5c)



The Langrange function associated with the equilibrium

optimization problem (5) is

L(y, η, µ;x) = f(y)− ηT (g(y)− x)− µTh(y), (6)

where η and µ are Lagrange multipliers associated

with (5b) and (5c), respectively. The KKT condi-

tions (first order optimality conditions) for a minimizer

(y = y(x), η = η(x), µ = µ(x)) are

∇yL(y, η, µ;x) = ∇f(y)−∇g(y)η −∇h(y)µ = 0, (7a)

∇ηL(y, η, µ;x) = −(g(y)− x) = 0, (7b)

∇µL(y, η, µ;x) = −h(y) = 0. (7c)

By introducing the vector z = [η; µ], we can rewrite the

system (7) as the algebraic constraints (1c).

3 Numerical Method

The computation of (3) requires solution of the semi-

explicit differential-algebraic initial value problem (1b)-

(1d). Subsequently, when (y(t), u(t), d(t)) is given, ψ =

φ is computed by quadrature. The system (1b)-(1d) is

stiff. Therefore, an implicit method must be used for

numerically efficent solution of (1b)-(1d). We exemplify

the involved numerical computation using Euler’s im-

plicit method. However, the principal numerical meth-

ods are also applicable with other implicit solvers such

as the ESDIRK methods (Kristensen et al., 2004) and

BDF based methods (Barton and Lee, 2002). Further-

more, we describe computation of∇uk
ψ for k ∈ N by an

adjoint method (Jørgensen, 2007; Völcker et al., 2011;

Capolei and Jørgensen, 2012). These gradients (sensi-

tivities) may also be computed by a forward method.

3.1 Numerical Integration

Define w =
[
x; y; z

]
and define the residual function

Rk+1 = Rk+1(wk+1) = Rk+1(wk+1;xk, uk, dk)

= Rk+1(xk+1, yk+1, zk+1;xk, uk, dk)

=

[
Dk+1(xk+1, xk, yk+1, uk, dk)

G(xk+1, yk+1, zk+1)

] (8)

for k ∈ N with Dk+1 = xk+1−xk−∆tkF (yk+1, uk, dk).

Given x0 = x̂0, {uk}N−1k=0 , and {dk = d̂k}N−1k=0 , the im-

plicit Euler discretization of (1b)-(1d) corresponds to

solving

Rk+1 = Rk+1(wk+1) = 0, k ∈ N (9)

sequentially for {wk+1}N−1k=0 by marching forward. Equa-

tion (9) is solved by an inexact Newton method, i.e. by

solving a sequence of linear systems

wm+1
k+1 = wmk+1 −M−1k+1Rk+1(wmk+1), (10)

until some convergence criteria is satisfied. The iteration

matrix is

Mk+1 =
∂Rk+1

∂wk+1
=

[
I −∆tk

∂F
∂y 0

∂G
∂x

∂G
∂y

∂G
∂z

]
, (11)

where

∂G

∂x
=

0

I

0

 , K =
[
∂G
∂y

∂G
∂z

]
=

∇2
yyL −∇g −∇h
−∇gT 0 0

−∇hT 0 0

 .
K denotes the KKT matrix of the equilibrium conditions

(7). The second derivative of the Lagrangian, L, with

respect to y is given by

∇2
yyL = ∇2f −

∑
i

ηi∇2gi −
∑
i

µi∇2hi. (12)

3.2 Gradients by the Adjoint Method

We substitute the discrete residual function (8) for

the differential-algebraic constraints (1c)-(1d) in the

function ψ given by (3) to obtain the following single

shooting objective function, in which the zero-order-hold

parametrization of the input and disturbances (1e)-(1f)

have been applied

ψ = ψ({uk}k∈N ; x̂0, {d̂k}k∈N ) (13a)

=

{
φ =

∑
k∈N

Φk(yk+1, uk, d̂k) : (13b)

x0 = x̂0, (13c)

Rk+1(wk+1, xk, uk, d̂k) = 0, k ∈ N , (13d)

[xk+1; yk+1; zk+1] = wk+1, k ∈ N
}
. (13e)

The Lagrange objective (2) is approximated by the

sum (13b) in which Φk approximates the integral over

[tk, tk+1[ using the rectangle rule with yk+1 (rather than

yk)

Φk = Φk(yk+1, uk, d̂k) = ∆tkΦ(yk+1, uk, d̂k). (14)

The adjoints, {λk}Nk=1, are computed by marching back-

wards in the equations(
∂RN
∂wN

)T
λN = −∇wN

ΦN−1, (15a)(
∂Rk
∂wk

)T
λk = −

(
∂Rk+1

∂wk

)T
λk+1 −∇wk

Φk−1, (15b)



for k ∈ {N − 1, N − 2, . . . , 1}. The Jacobian of the

discrete residual ∂Rk+1

∂wk+1
(wk+1, wk, uk, d̂k) was defined in

(11) and the Jacobian with respect to the states and the

algebraic variables in the previous timestep is

∂Rk+1

∂wk
(wk+1, wk, uk, d̂k) = −

[
I 0 0

0 0 0

]
, (16)

for k = 1, . . . , N − 1. The gradient of the objective is

∇wk+1
Φk =

 0

∇yk+1
Φk

0

 , k ∈ N . (17)

The gradients of ψ with respect to the inputs,

{∇uk
ψ}k∈N , are computed by

∇uk
ψ = ∇uk

Φk +

(
∂Rk+1

∂uk

)T
λk+1, k ∈ N . (18)

4 UV Flash Example

Neglecting kinetic and potential energy, the energy-

and mass balance of a flash unit may be expressed as

U̇(t) = Hv
F (t) +H l

F (t)−HV (t)−HL(t) +Q(t), (19a)

ṅi(t) = fvF,i(t) + f lF,i(t)− vi(t)− li(t), (19b)

for the components i = 1, .., NC . U is the internal energy

and ni is the total holdup of component i. HV and

HL are the enthalpies of the vapor and liquid streams

respectively, and Hv
F and H l

F are the vapor and liquid

enthalpies of the feed. fvF,i and f lF,i are the vapor and

liquid component flow rates of the feed. vi and li are the

component flow rates of the vapor and liquid streams.

The conservation equations (19) are in the form of the

differential equation (1d) where the function F is

F (y(t), u(t), d(t)) =[
Hv
F (t) +H l

F (t)−HV (t)−HL(t) +Q(t)

fvF (t) + f lF (t)− v(t)− l(t)

]
. (20)

Let the state variables, x, the algebraic variables, y, the

Lagrange multipliers, z, the manipulated variables, u,

and the disturbance variables, d, be defined as:

x = [U ;n] ∈ R1+NC , (21a)

y =
[
T ;P ;nv;nl

]
∈ R2+2NC , (21b)

z = [µ; η] ∈ R2+NC , (21c)

u = [Q;FV ;FL] ∈ R3, (21d)

d =
[
TF ;PF ; fvF ; f lF

]
∈ R2+2NC . (21e)

The VLE in the flash tank is governed by

max
T,P,nv,nl

S = Sv(T, P, nv) + Sl(T, P, nl) (22a)

s.t. Uv(T, P, nv) + U l(T, P, nl) = U, (22b)

V v(T, P, nv) + V l(T, P, nl) = V, (22c)

nvi + nli = ni, i = 1, . . . , NC . (22d)

The VLE problem (22) is in the form of equation (5)

where the functions f , g and h are

f(y) = f(T, P, nv, nl)

= −
(
Sv(T, P, nv) + Sl(T, P, nl)

)
, (23a)

g(y) = g(T, P, nv, nl)

=

[
Uv(T, P, nv) + U l(T, P, nl)

nv + nl

]
, (23b)

h(y) = h(T, P, nv, nl)

= V v(T, P, nv) + V l(T, P, nl)− V, (23c)

We consider a mixture of benzene, toluene and diphenyl

that is separated in a flash tank. Figure 2 shows the

controlled variables and the manipulated variables for

a least-squares optimal transition between two steady

states. The optimal transition is computed by dy-

namic optimization and compared to an open-loop non-

optimized transition. The optimized transition is signif-

icantly faster than the transition based on the steady

state values of the manipulated variables. Figures 3-

5 show the composition variables, selected thermody-

namic functions (H, S, G), and the state variables for

the optimal transition.

Table 1 shows the computation time for solving the

OCP (4) with the presented dynamic optimization algo-

rithm using different compilers, optimization libraries,

and linear algebra libraries. fmincon is at least 10 times

faster when used with a compiled C implementation for

numerical integration compared to a Matlab implemen-

tation for numerical integration. When the compiled C

code is called from Matlab, it will in all cases be using

Intel MKL. Using IPOPT gives a modest speedup of be-

tween 6 and 8, because IPOPT uses a limited-memory

BFGS update strategy tailored for large-scale systems.

KNITRO results in a speedup of between 41 and 48 com-

pared to a pure Matlab implementation, and NPSOL

gives a speedup of between 47 and 66. The Intel com-

pilers and Intel MKL generally have a positive effect on

the implementations using KNITRO and NPSOL. The

compiler icc (Intel) rather than the compiler gcc and In-

tel MKL rather than Netlib’s BLAS/LAPACK have a

negative effect on the implementation using IPOPT.
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Figure 2. Transition between two steady states by dynamic optimization (blue) and use of steady state inputs

(green dashed).

5 Conclusion

We presented an adjoint single-shooting algorithm

for gradient-based dynamic optimization of flash pro-

cesses. The algorithm simultaneously solves the equilib-

rium conditions and the differential conservation equa-

tions. A simulation example demonstrates that dynamic

optimization enables fast transition between steady

states. This is an important feature for nonlinear model

predictive control applications. The numerical experi-

ments show that using a simultaneous numerical inte-

gration scheme in the adjoint single shooting algorithm

yields faster solution than with a nested numerical in-

tegration scheme. This is primarily due to fewer evalu-

ations of the thermodynamic properties. Furthermore,

the computational time of the adjoint single-shooting al-

gorithm is compared for four optimization solvers (KNI-

TRO, NPSOL, IPOPT and fmincon [Matlab]) and il-

lustrates that using a compiled language together with

an appropriate NLP solver library is essential to good

computational performance. KNITRO and NPSOL give

significant speedup compared to a pure Matlab imple-

mentation. IPOPT is designed for large-scale problems

and less appropriate for the small dense problem con-

sidered in this work. Furthermore, the Intel compil-

ers in combination with the Intel MKL are generally

more efficient than using GNU compilers and Netlib’s

BLAS/LAPACK distribution. Using the suggested al-

gorithm, we can we can solve a dynamic UV flash op-

timization problem with 3 components in less than 0.2

seconds.
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Figure 3. Composition variables of the optimal transi-

tion. Overall, z, liquid, x, and vapor, y, mole fractions

as well as the vapor fraction, β.
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Figure 4. Thermodynamic state functions for the flash

tank in the optimal transition. H is the enthalpy, S is

the entropy, and G is Gibbs’ free energy.
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Figure 5. State variables for the optimal transition.

Table 1. Absolute (in seconds) and relative computation

time of solving the OCP (4) using simultaneous numeri-

cal integration. Average over 10 calls. fmincon (C) uses

a C implementation of simultaneous numerical integra-

tion and fmincon (M) uses a Matlab implementation.

Sp.up is short for speed-up compared to the pure Matlab

implementation, i.e. fmincon (M).

fmincon IPOPT KNITRO NPSOL

Matlab C C C C

Iter. 192 192 445 168 158

Func. 195 195 1435 171 159

gcc, gfortran, Netlib BLAS/LAPACK

Abs. 12.461 1.185 1.663 0.298 0.263

Rel. 1.000 0.095 0.133 0.024 0.021

Sp.up 1.0 10.5 7.5 41.8 47.4

icc, gfortran, Netlib BLAS/LAPACK

Abs. 12.461 1.081 1.753 0.277 0.246

Rel. 1.000 0.087 0.141 0.022 0.020

Sp.up 1.0 11.5 7.1 45.0 50.7

icc, gfortran, Intel MKL

Abs. 12.461 1.138 1.876 0.277 0.213

Rel. 1.000 0.091 0.151 0.022 0.017

Sp.up 1.0 10.9 6.6 45.0 58.5

icc, ifort, Intel MKL

Abs. 12.461 1.149 1.618 0.262 0.189

Rel. 1.000 0.092 0.130 0.021 0.015

Sp.up 1.0 10.8 7.7 47.6 65.9


