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Abstract 

The demand for energy is expected to increase for the foreseeable future as the human population 
increases, the average standard of living improves, and electronics and automation find more applications 
in our daily life. While fossil energy resources are greatly in demand, sustainability concerns have 
motivated energy generation from renewable and reusable energy resources, and the use of more efficient 
energy-converting and energy-consuming systems.  Consequently, for the past decade there have been 
major advances in harvesting energy from renewable and reusable resources and in improving the 
efficiency of energy-consuming and energy-converting systems. This paper focuses on these advances in 
renewable power generation and storage systems, highlighting how multi-scale first-principles 
mathematical modeling can contribute to systematic optimal design, operation, and integration of these 
systems. It puts in perspective how multiscale mathematical modeling has contributed to advances in solar 
cells, fuel cells, flow batteries and rechargeable batteries, and in the integration of these systems with 
power grids.  
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Introduction
The growing demand for energy is driven mainly by 

population and income growth. By 2030, the world 
population is projected to reach 8.3 billion (vs. 7.3 billion in 
July 2016), implying that an additional one billion energy 
consumers will be created. Concurrently, world total income 
in 2030 is expected to be roughly 100% higher than the 2011 
level. These changes translate into a 2030 world primary 
energy consumption estimate that is 36% higher than the 
2011 level (BP Energy Outlook 2030, 2013). 

 This increasing demand for energy and growing 
awareness of the sustainability drawbacks of using fossil 
fuels (Daoutidis et al., 2016) have created a lot of interest in 
energy generation from renewable and reusable energy 
resources, and in the use of more efficient energy-
converting and energy-consuming systems.  As discussed by 
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Smalley (2005), the world’s energy needs can be completely 
met sustainably (the “terawatt challenge”) by having six 100 
km by 100 km solar generation areas at 10% conversion 
efficiency in strategic locations around the earth.  

However, because of the highly intermittent nature of 
renewable energy resources (such as sunlight and wind), the 
integration of these power generating systems into utility 
power grids leads to degradation of power quality, unless 
compensating power storage systems are used. To supply 
power continuously using renewable energy systems, these 
systems must be integrated with energy storage systems. 
Thus, the problem of efficiently and practically harvesting 
energy from renewable resources is not separable from that 
of efficiently storing it. 
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This paper focuses on renewable power generation and 
storage systems, and how first-principles (FP) mathematical 
modeling can contribute to systematic optimal design, 
operation and integration of these systems. It puts in 
perspective how mathematical modeling has contributed to 
advances in solar cells, fuel cells, flow batteries and 
rechargeable batteries, and in the integration of these 
systems with power grids.  
Power Generation  

In 2014, globally a total of 22,433 TWh power 
(electricity) was produced from coal (38.9%), gases (22%), 
hydroelectric (16.8%), nuclear (10.8%), petroleum (4.8%), 
and others (6.7%) [Figure 1]. The other sources include 
biomass and waste (2%), geothermal (0.9%), 
solar/tide/wave (0.7%), and wind (3.1%). In same year, the 
U.S. Energy Information Administration (EIA) reported a 
net U.S. electrical power generation of 4,094 TWh power, 
which was produced from coal (38.6% vs. 33.2% in 2015), 
gases (27.8% vs. 33.0% in 2015), nuclear (19.5% vs. 19.5% 
in 2015), hydroelectric (6.3% vs. 6.1% in 2015), renewables 
excluding hydroelectric and solar (6.4% vs. 6.7% in 2015), 
solar (0.4% vs. 0.7% in 2015), petroleum liquids and coke 
(0.7% vs. 0.7% in 2015), and other (0.3% vs. 0.3% in 2015). 
Figure 2 highlights how U.S. electricity from renewables 
has grown from 2006 to 2016. The percent of power 
produced from renewable resources globally and in the U.S. 
in 2014 was 23.5% and 13.1%, respectively. Figure 3 shows 
the past and forecasted trends in world electricity generation 
by source; it shows that world energy generation from 
renewable resources is expected to more than double from 
2012 to 2040 and be about 29% of total electricity 
generation in 2040.  

While renewable power resources are very attractive 
from a sustainability point of view, in terms of power grid 
management, most renewable sources are classified as anti-
dispatchable; that is, their power output levels change with 
time and the grid operator usually has no (or very little) 
influence over these changes. Thus, they put additional 
burden on both power and energy management. To be able 
to compensate for the highly intermittent nature of these 
energy sources, renewable energy systems should be 
integrated with other power generation and/or power 
storage systems. 
Photovoltaics 

Solar cells are very attractive, as they generate power 
from sunlight, which is freely available everywhere, making 
them suitable for local power generation in remote areas.  
While silicon-based solar cells are still the commercially-
dominant photovoltaic technology, new technologies using 
nanocrystalline materials and conducting polymer films 
have attracted considerable attention due to their potential 
lower cost and higher flexibility (Grätzel, 2009; Kojima et 
al., 2009). Current solar cells are based on organo-metallic 
perovskites, polymers, oxides nanoparticles sensitized with 
dye, thin films, quantum dots, extremely thin absorbers, and 

silicon. Present challenges center around additional cost 
reduction, enhancement of minority carrier lifetimes, 
improved photon absorption, greater charge mobility, and 
ultimately improved efficiency.  

One of the most promising photovoltaic technology is 
perovskite solar cells, which have high light-absorption 
coefficients with tunable band gaps, high charge carrier 
mobilities, and very long minority-carrier lifetime leading 
to long charge diffusion lengths. While the conversion 
efficiency of perovskite solar cells was just 3.8% in 2009 
(Kojima et al., 2009), the efficiency is currently 22.1%. This 
rapid improvement has led to unanswered questions such as 
how cell materials operate, how further improvements can 

 
Figure 1:  World electricity production from all 
energy sources in 2014. www.tsWp-data-portal.org 

 
Figure 2:  U.S. electricity generation from major 
energy sources. (U.S. EIA) 

 
Figure 3:  World electricity generation from major 
energy sources. (U.S. EIA) 
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be made, and how stability, current-voltage (I-V) hysteresis 
and chemical degradation due to moisture can be overcome.  

Different modeling approaches including FP modeling 
and equivalent circuit modeling have been used to predict 
the solar cell behavior. Because of the nonlinear 
dependence of cell I-V behavior on temperature and 
irradiance level, nonlinear FP models are needed to predict 
the cell behavior accurately.  

FP electronic-level modeling [density functional theory 
(DFT)] has provided a better understanding of perovskite 
solar cells. DFT studies have predicted key solar parameters 
such as the absorption spectra and bandgap with good 
accuracy and provided insight into the structural, physical, 
chemical and electronic properties of these materials 
(Mosconi et al., 2013;  Brivio et al., 2013; Frost et al., 2014).  

FP macroscopic models of solar cells are based on 
macroscopic conservation equations (Bavarian et al., 2014; 
Smolin et al., 2015). They can predict cell power, I-V 
behavior, how process parameters (such as the electron 
diffusion coefficient and the recombination rate constant) 
influence I-V performance, and how the temporal and 
spatial variations of charge density and other species 
concentrations vary within a cell. They can be used to 
describe cell module characteristics, orientation and 
geometric characteristics, array-level characteristics, power 
conditioning unit level characteristics, plant-level 
characteristics, operations and maintenance characteristics, 
and so on.   

Macroscopic FP modeling of traditional liquid-
electrolyte and polymer-electrolyte dye sensitized solar 
cells (DSSCs) has been studied (Bavarian et al., 2014; 
Smolin et al., 2015). Combined with experiments, these 
models provided a better understanding of the processes 
that occur within DSSCs and helped determine how process 
parameters affect cell performance (Bavarian et al. 2014). 
The effects of polymer chemistry and pendant groups on 
polymer-electrolyte DSSC performance have been studied 
via modeling (Smolin et al., 2015), leading to the 
determination of three unique ways that polymer chemistry 
affects the interfacial DSSC processes and a better 
understanding of how to improve cell efficiency (Smolin et 
al., 2015).  Also, Wang et al. (2014) developed an FP DSSC 
model to gain an improved understanding of charge 
transport via the redox couple in a liquid electrolyte, and 
theoretically calculated a critical thickness of the TiO2 
electrode for optimal performance.  

In addition, macroscopic and microscopic DSSC 
models have been developed (Andrade et al., 2011; 
Gagliardi et al., 2011; Nelson, 1999). Also, there have been 
electronic-level DSSC modeling based on DFT and time-
dependent DFT (TD-DFT) (Le Bahers et al., 2011; Labat et 
al., 2012; Pastore and De Angelis, 2013; De Angelis, 2014). 
These models have been used to capture snapshots of single 
processes such as charge injection. Electronic- and 
molecular-level models have provided a better 
understanding of the adsorption of novel dyes onto anatase 

TiO2 and the effects of additives on the conduction band 
edge of TiO2, and have predicted optical and electronic 
properties of novel dyes in liquid-electrolyte DSSCs (Labat 
et al., 2012; De Angelis, 2014).  

Currently, in the area of DSSCs there is a need for a 
better understanding of how polymer-electrolyte chemistry 
affects the cell performance; e.g., understanding the 
interdependences and synergetic effects among DSSC 
components and processes, which occur at different length 
and time scales. FP multi-scale modeling (Figure 4) can 
improve this understanding.  It can advance fundamental 
understanding of materials across length and time scales to 
elucidate the effects of microstructures and surfaces on the 
cell performance, predict materials properties and overall 
cell performance, and provide an understanding of 
inaccessible but critical interfacial processes that control 
DSSC performance.  

For every type of solar cell, high conversion efficiency 
is essential for large-scale deployment. Model-based 
optimization of solar cells allows for calculating the cell 
optimal design parameters at different irradiances and 
optimal cell operation conditions, and to find optimal cell 
integration (with other energy generation and storage 
systems) conditions and configurations.  
Concentrating Solar Power 

Concentrating solar power (CSP) technologies use 
mirrors to reflect and concentrate sunlight onto receivers 
that collect and convert solar energy to thermal energy. The 
thermal energy can then be used to produce electricity via a 
turbine or heat engine driving a generator. As these 
technologies collect solar energy and convert the energy to 
thermal energy that can be stored easily, they can provide 
electricity on demand at an affordable price, even when 
there is no sunlight. They can also be installed as fossil-fuel 
backup/hybridization units that allow existing fossil fuel 
plants to operate cleaner at the same or a lower cost. 

CSP technologies have allowed for reducing the cost of 
solar energy (U.S. DOE SunShot Initiative, 2015), making 
large-scale dispatchable solar energy systems cost 
competitive. Indeed, they have already reduced the cost of 
CSP-generated electricity by about 36%, from 21 ¢/kwh to 
13 ¢/kwh, towards achieving the U.S. DOE goal of 6 ¢/kwh.  

Mathematical models of the processes involved in the 
CSP technologies have applications in designing and 
optimizing each process unit, and optimal integration and 
operation of these units. 

 
Figure 4: Multiscale modeling of DSSCs and its 
interaction with cell fabrication and characterization.  
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Fuel Cells  
A fuel cell converts the chemical potential energy of a 

fuel to electricity.  Fuel cells have been named based on 
their electrolyte type, which sets their operating temperature 
range. Commercially-available fuel cells include 
polyelectrolyte membrane fuel cells (PEMFCs), solid oxide 
fuel cells (SOFCs), phosphoric acid fuel cells, and molten 
carbonate fuel cells. Their primary components are an ion-
conducting electrolyte, an anode, and a cathode.  For 
brevity, here we limit our focus to SOFCs.  

FP macroscopic modeling has been used to study 
steady-state and dynamic behavior of fuel cells, design the 
cells, investigate control strategies, and design experiments 
(Bavarian et al., 2010). Current challenges are to reduce 
cost by primarily reducing and/or replacing the use of Pt, 
improve catalytic activity in both the anode and cathode, 
and make the systems more robust.  

A SOFC (or a PEMFC) can have one (stable), three 
(two stable and one unstable) or five (three stable and two 
unstable) steady states depending on the operating 
conditions (Bavarian et al., 2010). Steady-state multiplicity 
leads to hot spots in SOFCs and wet spots in PEMFCs that 
are of critical importance in the operation of the cells. Using 
macroscopic models, the presence of steady-state 
multiplicity in proton-conducting and co-ionic conducting 
SOFCs has been shown (Bavarian and Soroush, 2012; 
Bavarian et al., 2013). The multiplicity is due to the 
exponential dependence of the electrolyte ion-conductivity 
on temperature and a positive feedback between 
temperature and the rate of heat generation in the cells. 

The type and level of details included in a mathematical 
model of a fuel cell depend on the application of the model. 
For real-time applications, the model equations should be 
solvable in real-time. In fuel cell modeling the art is not to 
include every complexity but to include enough details to 
predict the variables of interest accurately enough. 
Accounting for every complexity in fuel cell modeling leads 
to the development of very complex, multi-time-scale, 
multi-dimensional models that are computationally 
expensive to solve (Bavarian et al., 2010).   

Fuel cells are inherently multi-time-scale nonlinear 
systems.  The multi-time-scale nature is a consequence of 
the involvement of processes with significantly different 
response times (Bavarian et al., 2010).  Electronic 
components of a fuel cell have the fastest responses, while 
the thermal processes in a fuel cell usually have the slowest 
responses. The existence of the significantly different time 
constants, e.g., from 1 ms to 10,000 s, in a fuel cell makes 
the governing dynamic equations very stiff. However, it 
allows one to simplify the models systematically based on 
the time scale of interest (Bavarian et al., 2010).   

Fuel cell optimization is conducted to obtain optimal 
operating conditions and design specifications, especially 
when these systems are integrated with fuel processing 
systems and/or are used together with other power 
generating and storage systems. The design of fuel cells is 

a challenging task due to several physical phenomena that 
should be optimized simultaneously to achieve efficient fuel 
cell operation. Fuel cell design is a multi-objective, multi-
variable problem.  More details can be found in (Soroush 
and Chmielewski, 2013).  
Power Storage 

Energy storage systems are typically categorized into 
two groups in terms of their use in power and energy 
management. Those used in power management include 
rechargeable batteries, flywheels, flow batteries, and 
capacitors, and those used in energy management include 
pumped hydro storage, compressed air energy storage, and 
thermal energy storage. We discuss only rechargeable 
batteries and flow batteries herein. A survey of other storage 
systems can be found in (Soroush and Chmielewski, 2013). 
Rechargeable Batteries 

A battery has one or more electrochemical cells. Each 
cell has an electrolyte, a positive electrode (anode), and a 
negative electrode (cathode). The key process in a 
rechargeable battery is a reversible electrochemical reaction 
that collect electrons in one direction and release electrons 
in the other direction. Rechargeable batteries respond very 
rapidly to load changes and usually have very low standby 
losses and high energy efficiency (60–95%). They have a 
short lead time, are able to withstand sitting, and are 
modular (Soroush and Chmielewski, 2013). However, they 
have small power capacity, low energy densities, high 
maintenance costs, a short cycle life, and a limited discharge 
capability. The most common battery systems are lead acid, 
lithium ion, nickel cadmium, sodium sulfur, sodium nickel 
chloride, and flow batteries such as vanadium redox and 
zinc bromine batteries (flow batteries are dealt with in a 
separate section in this article).  

Li-ion batteries are currently the most common type of 
energy storage in consumer electrons and have been widely 
studied. They have potential applications in the 
transportation sector (such as electric vehicles) and in load 
leveling of the power grid, which is critical because of 
intermittent nature of renewable power sources such as 
wind and solar. Major current challenges for Li-ion batteries 
are how to improve power density and cycle life.  

Within a Li-ion battery, multiple processes occur over 
different time and length scales, such as charge transfer, 
charge carrier and mass transport within the bulk of 
material, across interfaces, as well as structural changes and 
phase transformation induced by concentration change of Li 
(Meng and Arroyo-de Dompablo, 2009).   

Rechargeable battery models range from nonlinear and 
coupled PDEs to simple linear ODEs. Initial models were 
chemical models. Control researchers then focused on 
equivalent-circuit models coupled with simple chemical 
rate equations. FP modeling and reducing the order and 
complexity of the models to make them suitable for real-
time applications have received a lot of attention (Soroush 
and Chmielewski, 2013). FP models have been used to 
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better understand materials behavior. Efforts are currently 
being made to accelerate material discovery to design new 
compounds in silico using FP calculations (Hautier et al., 
2012). Ceder et al. (1998) predicted, via DFT, new electrode 
compositions in which replacement of the transition metal, 
M, in layered LiMO2 with Al (Al-doping) would improve 
voltage. FP models have also been used to understand the 
rate capabilities, capacity, cycle stability, intercalation 
voltage, electronic structure, electronic conductivity (power 
and rate), lithium diffusion, thermal stability, and safety of 
Li-ion systems (Maxisch et al. 2006; Meng and Arroyo-de 
Dompablo, 2009). DFT studies of the rate capabilities 
commonly focus on the activation barriers for Li motion to 
design materials with better performance.  

Macroscopic FP models have also been developed for 
Li-ion batteries to simulate the electrochemical and thermal 
behavior of the batteries (Botte et al., 2000).  Micro-
macroscopic models that incorporate solid-state physics of 
the electrode material, and interfacial morphology and 
chemistry have also been developed (Gu et al., 1998). These 
models can predict the average cell temperature, the 
temperature distribution inside a cell, and the effects of the 
environment on battery electrochemical and thermal 
behavior (Gu and Wang, 2000). Multiscale modeling which 
models batteries at the pore-level, cell level, and the stack 
level provide a comprehensive picture of such systems 
(Wang and Srinivasan, 2002). 
        An application of battery models is in the estimation of 
the state of charge and the state of health of batteries from 
their external voltage and current. The real-time model-
based estimation has motivated studies to carefully reduce 
the order and complexity of FP models and to develop 
computationally-efficient estimation methods. Another 
application is in the development of optimal battery-
charging policies that minimize battery ageing. 
Flow Batteries 

A flow battery is a type of rechargeable battery that has 
a high power storage capacity.  It typically has two chemical 
components dissolved in liquids (electrolytes) and most 
commonly separated by a membrane, which provides the 
rechargeability. Electrolytes are regenerated and stored 
externally in tanks. Various electrolytes such as vanadium 
redox, uranium redox, zinc bromine, zinc cerium, and 
polysulfide bromide have been used. Flow batteries have a 
storage period ranging from seconds to hours, a cycle 
efficiency of 75 to 85%, and a time-response (from zero to 
full power) in the order of seconds or less.   

Advantages of flow batteries over traditional batteries 
are their flexible layout due to their separate energy and 
power components, long cycle life, quick response time, 
and no harmful emission. But they are more complicated 
and may require pumps, sensors, control units and 
secondary containment vessels. Also, their energy densities 
are generally lower than portable batteries, and they have 
high initial self-discharge rate. Since flow batteries have 
much in common with fuel cells and traditional 

rechargeable batteries, their FP models are based on the 
same principles.  

Macroscopic models based on material balances, 
transport equations, and electrode kinetic expressions have 
been proposed at the cell and stack levels. These models can 
predict current and potential distributions, the optimum 
resistance of the electrolyte, and provide a better 
understanding of processes occurring within flow batteries 
(Weber et al., 2011).  

Integration with Grids 
As intermittent renewable energy sources are 

increasingly integrated into power grids, the balance 
between power supply and demand increases in complexity 
due to abrupt changes in weather conditions.  Effective 
energy storage and total generation should match to total 
load precisely on a second-by-second basis (Poullikkas, 
2013). Grid power management systems should have access 
to accurate forecasts of the load and be able to constantly 
compensate for changes in wind and solar power input over 
short or long time spans (Dell and Rand, 2001).  

Current energy storage systems for grid stabilization 
and support consist of large installations of lead-acid 
batteries (Purvins et al., 2013). These can provide only a 
few minutes of energy, while grid power management 
requires longer durations of storage in the presence of 
shifting peak loads and power generated by renewable 
systems. Thus, reengineering of the storage system is 
required to handle greater energy to power ratios.  

Battery storage systems can support large-scale solar 
and wind integration in existing power systems, by 
providing grid stabilization, frequency regulation, and wind 
and solar energy smoothing (Poullikkas, 2013). Currently, 
sodium-sulfur-based batteries are preferred for large-scale 
storage. These batteries have the advantage of high energy 
density, high charge/discharge efficiency (~80%), long 
cycle life, and fabrication from inexpensive materials. FP 
models of rechargeable batteries, flow batteries, 
photovoltaics, and fuel cells allow for efficient power 
management in grids and optimal design and integration of 
the systems (Zachar and Daoutidis, 2015). 

Concluding Remarks 
This paper put in perspective advances in FP multiscale 

mathematical modeling of several renewable energy and 
storage systems and highlighted how these systems can 
benefit from mathematical modeling. Present research 
challenges in these areas were listed.  It is concluded that 
mathematical modeling can contribute significantly to the 
optimal design and operation of power generation and 
storage systems, as well as optimal integration of power 
storage and generation systems.   
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