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Abstract

An informative model predictive control (MPC) algorithm is presented. The formulation builds upon

recent advances in the field that extend certainty equivalence formulations with semi-definite constraints.

The proposed adaptive control algorithm and the previous methods are presented in the context of fixed

state transition dynamics generated by a finite orthonormal Laguerre basis. The development of an

implementable convex relaxation is presented along with an illustrative example.

Keywords

Adaptive MPC, Dual Control, Information

Introduction

The control of uncertain systems require the consider-

ation of conflicting tasks. Feldbaum (1961) formalized

this problem with the term Dual Control in order to

recognize the simultaneous need of system identification

and control. Some of the recent developments in lin-

ear MPC under uncertainty have been aimed towards

the robust stability of the controller with respect to

model uncertainty (Zeilinger et al., 2014). On the other

hand, strategies that aim to enforce excitation that leads

to uncertainty reduction have been proposed by others

(Marafioti et al., 2014; Larsson, 2014; Heirung et al.,

2015). The scope of this article is the analysis of infor-

mative model predictive control formulations with linear

state transition dynamics specified by a finite orthonor-

mal series. First, we introduce the system model and

the properties that enable an augmented problem defi-

nition that includes the propagation of information with

respect to the uncertain parameters. With the explicit

quantification of the exploratory value of the closed loop

input sequence, constraints for an adaptive MPC formu-

lation are defined. We conclude with the definition of

a new constraint that combines distinct advantages of

previous methods.
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System Model

We consider a MIMO system with ny outputs and nu

inputs. Each MISO sub-system is given by the following

output error (OE) LTI dynamics:

xijt+1 =Aijxijt + bijujt , ∀j ∈ [1, 2, . . . , nu]

yit = ci(θ∗)xit + wit, ∀i ∈ [1, 2, . . . , ny]
(1)

where xit =
[(
xi1t
)>
,
(
xi2t
)>
, . . . ,

(
xinut

)>]
. The state

transition matrix and the input vector for the jth in-

put and ith output pair, yi and uj , are specified by a

generating pole of a finite Laguerre series, aij ,:

Aij =


aij 0 . . . 0

(1− aij2
) aij

. . .
...

...
. . .

. . . 0

(−aij)nijx −2(1− aij2
) . . . (1− aij2

) aij



bij =

√
1− aij2

[
1 −aij . . . (−aij)nijx −1

]>
The output is a linear function of the state given by a

vector of unknown parameters, θ∗, that define all MISO

state-output row vectors, ci, and a white noise signal,

wi. By an appropriate arrangement of the model com-

ponents for the MISO sub-systems, an overall MIMO



state-space of the following form is constructed:

xt+1 =Axt +But, x ∈ Rnx , nx =

ny∑
i=1

nu∑
j=1

nijx

yt = C(θ∗)xt + wt

(2)

The control design in the following sections is given

under this system definition. In general, it is applicable

to any other orthonormal basis, such as Kautz series,

that generate the state transition dynamics.

MPC Problem

The MPC problem is slightly modified from the def-

inition by Larsson (2014) to include a quadratic cost for

the terminal state. An objective function for tracking of

piecewise linear output trajectories is given by

J(x̂0, ū) :=

N−1∑
k=1

E

[
‖yk − rk‖2Q

]
+

N−1∑
k=0

(‖ûk‖2R + ‖∆ûk‖2S) + ‖x̂N − x̂rN‖
2
P

(3)

where ˆ( ) denotes the projected trajectories for the re-

ceding horizon window. According to the model defi-

nition in Eq. (2), the predicted output contribution to

the objective function is nondeterministic since the state

transition dynamics are fixed and noise free. Since fu-

ture estimates are functions of output realizations that

are not available in the present, expected output trajec-

tories are defined as conditional expectations for a fixed

parameter vector, θ, current state, x̂0 = xt, and future

input signals ū :=
[
û>0 û

>
1 . . . û

>
N−1

]>
:

ŷk := E [yk|θ, x̂0, ū] = C(θ)x̂k

if the initial condition for the state is also uncertain, the

current Kalman filter estimate, x̂0 = x̂t|t, can be used

instead.

In order to define a deterministic optimization prob-

lem a decision must be made in how to model future out-

put predictions. A certainty equivalence (CE) predictor,

takes a parameter vector estimate as if it contained the

actual values for the process. On the other hand, a cau-

tious predictor includes the level of uncertainty defined

by the current covariance of the parameter estimate as if

it remained unchanged regardless of future realizations.

Both of this limiting simplifications fail to capture im-

portant features of the actual behavior for parameter es-

timate distributions under sequential information gains.

Deterministic Propagation of Information

A model for the parameter-error is required for the

expected value of the output contribution in Eq. (3):

E

[
‖yk‖2

]
' E

[
‖yk‖2|θ, x̂0, ū

]
= E

[
‖ŷk + yk − ŷk‖2|θ, x̂0, ū

]
= E

[
‖ŷk‖2 + ‖ek‖2 + ‖wk‖2|θ, x̂0, ū

] (4)

where the model error is given by parameter and noise

contributions (ek and wk respectively). The last equality

in Eq. (4) holds if E [ek] = E [yk − ŷk] = 0. This requires

a parameter estimate distribution such that E [θ − θ∗] =

0. The maximum likelihood estimator (MLE), θ̂t, which

is equivalently obtained by recursive least squares (RLS)

for Eq. (2), satisfies this condition. It holds asymptoti-

cally, as the number of recorded input-output pairs in-

creases, that It1(θ∗)1/2(θ̂t−θ∗)→ N (0, I). The informa-

tion matrix is defined in terms of the output sensitivities

and the diagonal noise variance matrix Λw,

It1(θ∗) :=

t∑
k=1

E

[(
∂ŷk
∂θ∗

)
Λ−1
w

(
∂ŷk
∂θ∗

)>]
∂ŷk
∂θ

:=

[
∂ŷk
∂θ1

∂ŷk
∂θ2

. . .
∂ŷk
∂θnθ

]> (5)

and the sensitivities for a given parameter vector are

obtained from uncertain contributions from the output

matrix and the estimated trajectory for the states:

∂ŷk
∂θl

=
∂C(θ)

∂θl
x̂k(θ) + C(θ)

∂x̂k(θ)

∂θl
=
∂C(θ)

∂θl
x̂k

where l = 1, 2, . . . , nθ. For system Eq. (2), the uncertain

state contribution is zero and the sensitivities reduce to

nθ×ny matrices of state vector components which evolve

deterministically. Furthermore, they are not functions

of the parameters but the parameter locations in C(θ)

instead. This means that information propagates deter-

ministically and the expected contribution of the pre-

diction error in the MPC objective function can be ap-

proximated by the Cramer-Rao bound defined by the

predicted information matrix.

E

[
‖ŷk‖2 + ‖ek‖2|θ̂t, x̂0, ū

]
' ‖C(θ̂t)x̂k‖2 + ‖x̂θk‖

2
Σ̂k

(6)

where x̂θk is the subset of elements of x̂k that cor-

respond to the uncertain parameter entries in C. The

projected covariance bound, Σ̂k, has observed and pro-

jected contributions and is obtained as the inverse of the

information matrix:

x̂i,θk :=
∂ci(θ)

∂θi
x̂ik, x̂

θ
k :=

[
(x̂1,θ
k )> (x̂2,θ

k )> . . . (x̂
ny,θ
k )>

]>
Σ̂k :=

(
Ît+k1

)−1

=
(
It1 + Ît+kt+1

)−1



with θi defined as the subset of elements of θ contained

in ci. Note that for Eq. (2), the information matrix

(and its inverse) has a block diagonal structure, with

each block corresponds to the information for a MISO

subsystem with respect to θ.

(
Ît+k1

)
i

=
(
It1
)
i
+

1

λi

k∑
k′=1

(
x̂i,θk′
)(

x̂i,θk′
)>

(7)

λi is a diagonal element in Λw corresponding to the vari-

ance for wi. The deterministic projected parameter er-

ror contribution is given by

‖x̂θk‖
2
Σ̂k

=

ny∑
i=1

(
x̂i,θk

)> (
Σ̂k

)
i

(
x̂i,θk

)
(8)

This term is nonconvex as it requires the nonlinear

propagation of information given by the matrix inversion

lemma applied to one-step recursions defined by Eq. (7).

Heirung et al. (2015) introduced a reformulation that re-

sults on a quadratically constrained quadratic program

(QCQP) by defining an auxiliary variable, ẑk. Under the

framework developed here, an equivalent reformulation

is presented:

ẑik =
(

Σ̂k

)
i

(
x̂i,θk

)
, ẑk =

[(
ẑ1
k

)> (
ẑ2
k

)>
. . .
(
ẑ
ny
k

)>]>
At each time index k, the parameter error contri-

bution from each MISO system in terms of ẑk is fully

defined by the following set of bilinear equations:

‖x̂θk‖
2
Σ̂k

=

ny∑
i=1

(
x̂i,θk

)>
ẑk(

Ît+k1

)
i
ẑik = x̂i,θk(

Ît+k1

)
i

=
(
Ît+k−1

1

)
i
+

1

λi

(
x̂i,θk

)(
x̂i,θk

)>
(9)

for k = 1, 2, . . . , N − 1 and i = 1, 2, . . . , ny. A determin-

istic objective function that explicitly accounts for the

cost of uncertainty in the parameters related to Eq. (3)

is formulated.

JD(θ̂t, x̂0, ū) :=

N−1∑
k=1

‖ŷk − rk‖2Q+

N−1∑
k=1

ny∑
i=1

(
x̂i,θk

)>
ẑik+

N−1∑
k=0

(‖ûk‖2R + ‖∆ûk‖2S)+

‖x̂N − x̂rN‖
2
P

(10)

Note that the contribution from the process noise signal

has been omitted since it is assumed to be a constant

and does not affect the optimization result. The first

three contributions define the exploitation, exploration,

and caution components of dual control as originally de-

scribed by Feldbaum (1961). The last term accounts for

the cost-to-go which can be approximated by the so-

lution of the LQR problem, via the discrete algebraic

Riccati equation.

The minimization of Eq. (10) subject to the con-

straints Eq. (9) is nonconvex due to the bilinear equal-

ities. Although it can be formulated and solved with

global optimization algorithms such as BARON (Tawar-

malani and Sahinidis, 2005), its solution is NP-hard and

even under a feasible initialization with a CE solution,

an optimal input sequence with respect to Eq. (10) is

not guaranteed in polynomial time. The complexity of

the problem, in terms of the number of equality con-

straints, increases quadratically with respect to the size

of θ and linearly with the receding horizon window size

N . In the following section, the formulation of convex

relaxations derived from simplified strategies to guaran-

tee informative closed-loop trajectories is presented and

analyzed with respect to Eq. (2).

Informative Control Strategies

In order to simplify the analysis and provide a base-

line for the performance of the informative formulations,

a ‘lifted’ optimization problem with respect to the CE

objective function is presented (Larsson, 2014):

JCE(θ, x̂0, ū) =

N−1∑
k=1

‖ŷk − rk‖2Q+

N−1∑
k=0

(‖ûk‖2R + ‖∆ûk‖2S) + ‖x̂N − x̂rN‖
2
P

= ū>Q(θ)ū+ ηt(θ)
>ū+ constant

where matrixQ(θ) ∈ SNnu , and the vector ηt(θ) ∈ RNnu

are defined by the receding horizon window size and the

system dynamics:

Q(θ) := Υ>Ξ(θ)>(IN ⊗Q)Ξ(θ)Υ + IN ⊗R+

D>(IN ⊗ S)D + Υ>NPΥN

ηt(θ) :=
[
2(Ξ(θ)Ψx̂0 − r̄t)>(IN ⊗Q)ΞΥ−

2ū>t−1(IN ⊗ S)D + 2((A)N x̂0 − x̂rN )>PΥN

]>
where ⊗ denotes the Kronecker product. The depen-

dence of ηt on the initial condition, x̂0, and the horizon

tracking trajectory, r̄t, is made implicit by the subscript



t. Υ, Ψ, and Ξ are constructed from the sequence

ŷk = C(θ)

(
(A)kx̂0 +

k∑
k′=1

(A)k−k
′
Bûk′−1

)
(11)

for k = 1, 2, . . . , N . The matrix ΥN corresponds to the

last nx rows of Υ, while the vector ūt−1 and the matrix

D define the vector of projected values for ∆ûk:

∆ū :=
[
(û0 − ut−1)

>
(û1 − û0)

>
. . . (ûN − ûN−1)

>
]>

=Dū− ūt−1

which leads to the definition of the following optimal

control problem:

min
ū

ū>Q(θ)ū+ ηt(θ)
>ū

s.t. ū ∈ Û

Υū+ Ψx̂0 ∈ X̂

Ξ(θ)(Υū+ Ψx̂0) ∈ Ŷ

(12)

with input, state, and output box constraints defined by

Û , X̂ , and Ŷ respectively. The optimization Eq. (12) is

reduced to the minimum number of free variables and

is a quadratic program (QP) for linear inequality con-

straints.

One approach to generate information by the closed-

loop trajectory defined by Eq. (12) would be to modify

the reference signal, r̄t to introduce the desired level

of excitation. Here, we limit the control design prob-

lem to the case where this is fixed and does not pro-

vide sufficient excitation. Larsson (2014) and Marafioti

et al. (2014) introduced two approaches applicable in

this situation. Both designs share the inclusion of a bi-

linear matrix inequality (BMI) that ensures an informa-

tive measure. From a practical point of view, this is an

indirect approach to steer the exploratory contribution

in Eq. (10) to zero by producing input sequences with

information content which result in the tightening of the

parameter covariance. Unlike linear matrix inequalities

(LMIs), BMIs describe sets that are not necessarily con-

vex, which make them harder to handle computationally

(VanAntwerp and Braatz, 2000). The informative BMI

constraints are relaxed by the introduction of a symmet-

ric matrix variable related to ū via a LMI defined by the

Schur complement lemma (Manchester, 2010):

U = ūū> is relaxed to U � ūū>

which in a Schur complement form, is equivalent to drop-

ping the rank constraint from[
U ū

ū> 1

]
� 0 and rank

[
U ū

ū> 1

]
= 1

MPC-X (Larsson, 2014)

The projected information blocks in Eq. (7) for a

horizon NI is rewritten in terms of ū:

(
Ît+NIt+1

)
i

=
1

λi
∂ci(θ)

∂θi

NI∑
k=1

(
Ψi
kx̂

i
0x̂
i>

0 Ψi>

k + Ψi
kx̂

i
0ū

>

I Υi>

k

+Υi
kūI x̂

i>

0 Ψi>

k + Υi
kūI ū

>

I Υi>

k

) ∂ci(θ)
∂θi

>

with the matrices Ψi, Υi, given by the rows of Eq. (11)

corresponding to a single output, ŷi. ūI corresponds to

the first NInu elements of ū. An experiment design con-

straint in Eq. (12) is constructed from the projected con-

tribution defined above, the observed information ma-

trix, and a target matrix-valued measure(
It1
)
i
+
(
Ît+NIt+1

)
i
� κtI∗i (13)

the time varying constant on the right hand is defined

such that κt → 1 for a finite t = TI (e.g. (t + NI)/TI).

I∗ can be derived from a probabilistic measure obtained

by an approximation of the Hessian of a predefined ap-

plication cost function. Defining Nθ := max rank (I∗i ),

feasibility of Eq. (13) requires Nθ ≤ NI ≤ N .

PE-MPC (Marafioti et al., 2014)

The mechanism for the persistent excitation (PE)

formulation is to guarantee sufficiently rich inputs. This

is achieved by sequentially subtracting rank 1 contribu-

tions of previous inputs from a matrix known to satisfy

an excitation measure. A constraint that ensures û0

compensates for this subtraction is then introduced in

the CE formulation. Define a vector of past inputs of

order Nθ and its corresponding sufficient input richness

matrix of order NΩ ≥ Nθ:

φt :=
[
u>t u

>
t−1 . . . u

>
t−(Nθ−1)

]>
, Ωt :=

NΩ−1∑
p=0

φt−pφ
>
t−p

for Ωt−1 � ρINθnu ,

Ωt � ρINθnu ⇐⇒ Γt + βtu
>
t + utβ

>
t + αtutu

>
t � ρInu

where the PE parameters (matrix Γt, the vector βt, and

the scalar αt) are defined by the Schur complement of Ωt

with respect to its upper principal minor corresponding

to the recorded input sequence. Finally, with a suitable

initialization of the parameters, the following PE BMI

constraint is enforced at each t:

Γt + βtû
>
0 + û0β

>
t + αtû0û

>
0 � ρInu (14)



Informative MPC

An implementable constraint is formulated for both

approaches in terms of Eq. (12) by including the relaxed

version of the corresponding BMI. Note that Eq. (13)

and Eq. (14) share a similar structure with the right

hand side fixed by a desired performance measure and

the left hand side is a function of constant, linear, and

bilinear contributions in terms of ū. The X formulation

only requires the storage of the observed information

and yields a set of ny BMIs with dimension NInu each.

The PE formulation requires the additional storage of

Nθ +NΩ−1 previous controls while the BMI dimension

corresponds to the number of inputs in the system, nu.

The higher problem size is the cost of explicitly account-

ing for a multi-step filtering of the inputs through the

state transition dynamics. Conversely, the PE approach

requires an arbitrary parameter initialization which de-

fines the closed-loop trajectory.

The lower bound on NI in Eq. (13) is the implicit

requirement of an increment of all eigenvalues which can

only occur with at least Nθ control actions. This is

problematic not only because it results in high ordered

BMIs, but most importantly because the informative

content in the implemented input is not guaranteed. By

modifying the right side of the BMI to a rank 1 matrix,

a one-step informative constraint is defined:

∂ci(θ)

∂θi

(
Aix̂i0x̂

i>

0 Ai
>

+Aix̂i0û
>

0 B
i> +Biû0x̂

i>

0 Ai
>

+Biû0û
>

0 B
i>
) ∂ci(θ)

∂θi

>

� λiκ
(
νtν
>
t

)
(15)

where νt iterates among the vectors of a basis for RNθ

(e.g. the columns of an identity matrix) and the matri-

ces Ai and Bi generate the state transition for the corre-

sponding MISO system. Assuming that only input box

constraints are present yields the following optimization

problem

min
ū,U

Tr(Q(θ)U) + ηt(θ)
>ū

s.t.

[
U ū

ū> 1

]
� 0

Ukj,kj − ujminūkj − u
j
maxūkj � u

j
minu

j
max

for kj = 0, 1, . . . , Nnu

Eq. (15)

for i = 0, 1, . . . , ny

(16)

where the objective function and the constraints have

been reformulated in terms of U . The operator Tr() is

in the form of a general real-valued linear function on

SNnu (Boyd and Vandenberghe, 2004). Since LMI con-

straints define convex sets, Eq. (16) is a convex problem.

Furthermore, it is a linear conic optimization problem

over the linear cone and the semidefinite cones defined

by the dimension of their respective LMI. Output and

state constraints can be equivalently formulated accord-

ing to the expressions in Eq. (12). This new constraint

set has the advantage of taking into account the state

transition dynamics with ny BMIs of order nu, achiev-

ing the appealing features of the previously discussed

approaches. In practical terms, it enforces the system-

atic tightening of the parameter covariance for all MISO

blocks one direction at a time. A simplified sketch for

the associated adaptive control algorithm is listed below

Algorithm

1. Define prior knowledge (x̂0, I1
1 , θ̂1), MPC problem

formulation (P,Q,R, S,N, r̄1), system dynamics

(A,B,C), and informative parameters (κ, ν, ∂c
i(θ)
∂θi ).

Set 1→ t

2. Solve Eq. (16), if infeasible solve Eq. (12)

3. Implement û0 and measure yt+1. Update the state,

the predicted output, and the sensitivities.

4. Update θ̂t and It1 with RLS,

θ̂t+1 = θ̂t +Kt+1

(
yt+1 − C(θ̂t)xt+1

)
Kt+1 =

(
It+1

1

)−1 ∂ŷt+1

∂θ∗

It+1
1 = It1 +

(
∂ŷt+1

∂θ∗

)
Λ−1
w

(
∂ŷt+1

∂θ∗

)>
5. Update P , r̄t, and set t+ 1→ t. Return to 2.

Example

Consider a MIMO system with ny = nu = 2.

The state transition dynamics are generated by a11 =

0.6, a12 = −0.1, a21 = 0.2, and a22 = −0.5, each SISO

subsystem has two states. The MISO output matrix is

given by an uncertain parameter vector, θ∗ ∈ R8:

c1 = [θ∗1 θ∗2 θ∗3 θ∗4 ] = [0.65 − 0.35 0.45 0.25]

c2 = [θ∗5 θ∗6 θ∗7 θ∗8 ] = [−0.70 0.30 0.50 0.40].

A tracking experiment (r1
t = 0.5, r2

t = −0.5∀t) is formu-

lated for 100 steps withN = 20, Q = I2, R = S = 0.01Q.

Outputs are assumed to have known noise variances



λ1 = λ2 = 0.001. Upper and lower input bounds de-

fined by u1
max = 3, u2

max = 2, u1
min = −1, u2

min = −2,.

The excitation vector, νt, iterates among the columns

of I4. Common initial state vector, noise sequence, and

guess for the parameters are used for all experiments.

Figure 1. Example input/output trajectories

The resulting optimal control problem solved at each

time index is a linear conic optimization with 40 lin-

ear variables, and 3 semi-definite constraints solved

with MOSEK (MOSEKApS, 2015). The solution time

is less than a second for the default tolerance for all

feasible instances. When infeasible, the QP is solved

to define a control action. The input/output per-

formance of the informative algorithm for 3 differ-

ent levels of information (κlow = 1 × 10−5, κnom =

1 × 10−4, κhigh = 1 × 10−3) is shown in Figure 1.

Figure 2 displays the solution feasibility of Eq. (16).

Figure 2. Feasibility of Eq. (16)

As expected, the number of infeasible instances increases

with κ. The QP solution was implemented in a total of

2, 29, and 50 steps for the low, nominal, and high levels

respectively.

Conclusions

Based on the observed number of infeasible instances,

the results suggest the need for adaptation of the infor-

mation level parameter κ. The minimum time formu-

lation by Larsson (2014) addresses this observation by

maximizing the informative content of the input signal

with respect to a fixed deterioration of the QP objective

function. The informative MPC algorithm presented

here can be equivalently modified.

Given the fixed state-transition dynamics, excitation

could be maximized constrained by a pre-defined Lya-

punov function in terms of the states instead. The exact

approach on how to accomplish this will be the subject

of future work.
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