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Abstract 

Rail scheduling is a challenging problem given both its spatial and temporal characteristics. Rail lines 

can be hundreds of km long, while single line train crossing strategies are based on a station or passing 

loop level and require the analysis of the problem on a minute time scale. In mixed-use rail systems with 

limited passing loop infrastructure, trains have different passing priorities and lengths, thus differing in 

their ability to use passing loops. Most commercial software tools for simulating rail systems often resort 

to problem-specific rules and heuristics. They can typically only be used by highly specialized personnel 

but are still unable to solve complex rail configurations since the simulation approach is not well suited 

to optimize the train crossing problem. This paper presents an integer formulation for the detailed 

scheduling of trains on a single main line using the modeling elements/ equations presented as part of the 

Process Systems-based Unit-Operation-Port-State Superstructure (UOPSS) framework. This model is the 

basis of the patent-pending Hatch Rail Optimizer (HRO) software. Other approaches in the literature fail 

to address many of the intricacies solved by our work. This approach is demonstrated through a practical 

case study involving a 370 km rail corridor with five different train sizes over a week-long scheduling 

horizon. Interesting computational experiences comparing Mixed Integer Linear Programming (MILP) 

and Integer Programming (IP) formulations are also discussed. 

Keywords 

Rail, scheduling, MILP, IP, optimization, UOPSS. 

Introduction

                                                           

* To whom all correspondence should be addressed 

In flexible rail networks, trains can cross each other 

simultaneously through double line sections, and 

significant yard capacity exists at intermediate stations 

(where trains may wait). This flexible structure is well 

suited to the use of discrete event simulation- and/or rule-

based scheduling tools, since conflicts between trains can 

be managed efficiently on a station-to-station basis. 

Other rail systems, however, have very limited 

scheduling flexibility. This occurs when there are long 

single-line sections interspersed with double line sections. 

Limitations are worsened when the rail system is used by a 

combination of freight- and passenger trains (“mixed-use” 

rail system) with very different train lengths, travelling 

times and priorities, and an assortment of passing loops 

lengths, only a few of which can accommodate longer 

trains.  

These limited-flexibility systems are often the result of 

multiple expansions or upgrades that were implemented 

over a number of decades. Such systems create a challenge 

for manual and simulation-/ heuristic-based scheduling, 

which cannot adequately address the system’s complexity 

while still resulting in a practically useful approach. This 

results in much lower utilization of rail system capacity 

that is theoretically available, very slow recovery from 



  
 

unforeseen disruptions in the system such as locomotive 

breakdowns, as well as difficulties in planning maintenance 

operations of specific rail sections and deciding on the best 

infrastructure investment strategies to increase rail system 

capacity. 

Given the capital intensity to expand on existing rail 

infrastructure, there has been significant interest in rail 

scheduling problems as a means to identify key track 

expansion locations, thus increasing business value. This 

interest in rail scheduling is demonstrated by numerous 

recent conferences and publications on this topic. Rail 

scheduling topic was also the recipient of the Edelman 

prize in 2008 (Kroon et al., 2008). 

Pellegrini et al. (2013) used a continuous-time MILP 

formulation to achieve the best possible feasible solution 

within a limited computation time, and obtained interesting 

insights into solver tuning. Regarding the underlying 

model, however, there is no mention of passing loops with 

different lengths, different train sizes nor single- and 

double-line sections. 

More recently, Andersson et al. (2015) proposed a 

MILP approach to increase the robustness of a rail 

schedule by adjusting the margin times between train 

launches. Once again, their model does not (1) allow trains 

to run in both directions, (2) consider multiple train sizes, 

nor (3) accept the definition of single- and/or double rail 

line sections. 

The next section describes the mathematical 

formulation of the many elements of the rail system, 

followed by a case study on a real 370-km mixed-use rail 

corridor with limited flexibility. 

Model Formulation  

An illustration of a small section of a single track rail 

system is shown in Fig. 1. The track between train stations 

is called a “Section”. Passing loops are track segments that 

allow trains to pass each other. 

 

 

Figure 1.   Elements of a single track Rail 
System 

There are several strategies for representing decision-

making systems in the literature, such as State-Task 

Network (STN, Kondili et al., 1993), Resource-Task 

Network (RTN, Pantelides, 1994) and Unit-Operation-

Port-State Superstructure (UOPSS, Kelly, 2005; Zyngier 

and Kelly, 2009). UOPSS was selected to represent the rail 

system due to its flexibility, ease of representation, and 

ability to manage selected or limited connectivity between 

various rail tracks. 

In UOPSS, decision-making elements are classified 

according to their Fill-Hold-Draw (FHD) logistic 

characteristics. Two very important FHD characteristics 

are those of batch process units (which introduce a delay in 

the system) and inventory units (which can accumulate the 

states that flow through the system). The different elements 

of the rail system are described in the following sub-

sections according to UOPSS terms. 

Rail Sections and Passing Loop Representation in UOPSS 

Each train enters a rail section, stays within this 

section for a user-specified travel time (runtime between 

stations), and then leaves for the next section, freeing up 

the current section to be used by another train. Due to their 

FHD characteristics, the sections of a rail line can therefore 

be represented in UOPSS terms by a series of fixed-time 

batch (delay) units through which trains (“states”) pass: 

 

 
In these equations, y, su and sd correspond to the 

setup (operation) of a rail section, its startup and shutdown, 

respectively. UT is the uptime (or train runtime) through 

the section. Note that the startup of a section implies the 

entry of a train into it, whereas its shutdown implies that a 

train leaves the section.  

In single-line rail environments, trains can only cross 

each other in opposite directions if there is a passing loop 

that is long enough to accommodate one of the opposing 

trains. Trains can enter an unoccupied passing loop at any 

time and remain there for an indefinite amount of time 

(unless specified otherwise) while other trains cross them 

on the main line. This FHD behavior is well represented by 

the inventory units in UOPSS. In this case, inventory 

capacity constraints represent the largest number of trains 

that can be in the passing loop at any point in time: 

 

 
In this equation, InvPL, FPLi and FPLo correspond to 

the inventory of trains in a passing loop, and the “flow” of 

trains entering and leaving a passing loop, respectively. 

There are as many “operation modes” for each train 

section and passing loop as there are train types in each 

direction. Therefore, if considering two different train 

lengths, each rail section and passing loop will have four 

different “operation modes” (m): (1) train1-direction1 

(T1D1), (2) train1-direction2 (T1D2), (3) train2-direction1 

(T2D1), (4) train2- direction2 (T2D2), as illustrated in Fig. 

2. 



  

 

 

Figure 2.   UOPSS representation of single line 
rail sections and passing loops for 2 train types 

 

Flexibility in the scheduling of rail systems is 

increased by many long passing loops and large yard 

capacity at some of the stations, at the expense of inflated 

capital requirements. Scheduling efforts are also typically 

simplified in dedicated lines (single purpose, same train 

priority, homogenous train and passing loop design). 

However, in systems with limited passing loop 

infrastructure and mixed (freight/passenger) utilization, 

more sophisticated modeling must be adopted. Therefore, 

one crucial aspect of the model is the ability to define the 

different connectivity between rail sections and passing 

loops for each train type. Since UOPSS allows the explicit 

definition of train lengths for each section as different 

modes of operation, incorporating limited connectivity into 

the model becomes a trivial task, as demonstrated in Fig. 3 

for both a (short) passing loop 1, which only accepts trains 

of type 1, and a (long) passing loop 2, which accepts both 

train types. 

 

Figure 3.   Different passing loop configuration 
depending on train type  

Train travel times (runtimes) through the system are 

different not only across train types, but also in each 

direction. This may be due to the existence of hills across 

the rail system, train load, type of train braking system and 

train configuration (number and type of locomotives, 

number and type of wagons). Given the explicit modeling 

of each train type and direction in UOPSS, it is a 

straightforward task to assign different runtimes through 

sections for each train type and direction, which 

correspond to the “batch times” of individual modes of 

operation within each section (UTs,m,d).  

Single- and Double-Line Rail Sections  

In limited flexibility environments, single rail tracks 

(in which only one train can travel in any direction) coexist 

with double tracks, which accommodate trains in both 

directions simultaneously. 

In UOPSS, the distinction between single- and double 

line sections is made by the number of terms added to the 

single-use constraint for each physical section, as indicated 

by the dotted rectangles in Fig. 4. For single-line sections, 

all modes of operation (train types and directions) are 

added to the single-use constraint, whereas for double-line 

sections, there are two independent single-use constraints: 

one for each direction. This implies that only one train type 

can be in any direction in any time period, but two 

directions may coexist. 

Double line sections: 

 
Single line sections: 

 
 

 

Figure 4.   Single- and Double-Line Sections 

Trains Following Each Other in Same Direction 

Another interesting and complicating characteristic of 

rail systems is the ability of long trains to follow each other 

in the same direction. However, when coming in opposite 

directions, long trains must wait for oncoming trains to 

completely clear all sections between two long passing 

loops before it can enter the first section. This behavior is 

illustrated in Fig. 5. 

 

 

Figure 5.   Same- , Opposite Direction Trains  

The fact that short trains may use the intermediate 

(shorter) passing loops and that long trains may follow 

each other when in the same direction requires extra 



  
 

considerations, given that simply adopting the sections 

with longer passing loops as a basis for the model would 

result in overly conservative solutions. This formulation 

also applies for shorter trains travelling in the same (or 

opposite) directions in very long single-track sections with 

no passing loops. 

The behavior shown in Fig. 5 is achieved in the model 

by assigning an extra binary variable for each direction for 

the long trains that assumes the value of 1.0 whenever any 

of the intermediate sections is active. A single use 

constraint on this new binary variable ensures that only one 

of these larger sections will be active in opposing 

directions (while still allowing trains to follow each other 

in the same direction). 

 

 

Objective Function 

In the previous sections, the UOPSS rail scheduling 

model structure was described. In rail systems, there are 

many types of objectives that are of interest to users.  

In a recent project, the client-specified rail software 

was not able to find even a feasible solution for a two day 

time horizon. This lead to a literature survey of research 

focused on the train dispatching problem and, to the best of 

our knowledge, for the complex rail system behavior 

outlined in the previous sections, no commercial tools 

exist, nor has previous research been published that 

addresses all of the previously outlined considerations. 

Current commercial rail software is often simulation-based, 

relying on rules and heuristics to avoid and resolve 

“conflicts” (i.e., infeasibilities) in rail crossings. These 

tools, even when used by rail experts, are ill-suited to 

manage the complexity of congested rail systems with 

multiple train types, single/ double lines and many train 

stations. 

For this reason, the objective of the case studies 

outlined in this paper was to minimize the usage of passing 

loops for all train types given a pre-specified train launch 

schedule where train dispatch times were specified at the 

battery limits to the problem. This is an indirect 

representation of the minimization of runtime of trains 

through the system, which can also easily account for 

different train priorities if different penalty values are used 

for passing loop “inventory” variables for each train type. 

This feature also allows users to set different spatial 

priorities in the usage of passing loops: e.g., passing loop 

usage closer to a port (or at a crew changeover train 

station) may be “more acceptable” (i.e., lower penalty 

value) than delays at other locations. 

Another potential objective of this model is 

maximizing the number of trains running through the 

system to: (1) determine the rail system’s maximum 

capacity, and (2) identify bottleneck sections. In these 

cases, the underlying model is identical to the one 

described in the previous sections, but the objective would 

be to maximize all of the “train flows” leaving the system 

in both directions, for all train types. Clearly, these “train 

flows” should be constrained by the user, lest the optimizer 

send only the shortest trains through the rail system. 

Possible Applications 

The first very useful application of this model is to 

obtain feasible train schedules given the train launch 

timetable. Once again, this far exceeds current commercial 

rail scheduling software capabilities, which is based on 

simulation for the detailed rail scheduling decisions and is 

currently unable to find feasible solutions for a system with 

this level of complexity. 

Since the model is based on a discrete-time scheduling 

model, management of track maintenance becomes a very 

simple task which only requires setting the specific 

section’s availability (represented by “setup” variables) to 

zero for the duration of the maintenance operation. The 

optimization model will find a feasible train schedule that 

satisfies this requirement, if one exists. 

Another interesting and useful application of the 

model is recovery from unforeseen events such as 

locomotive breakdowns. In this case, after the event is 

remediated, traffic in the rail system must be re-established 

as quickly as possible. This is a very challenging 

requirement for simulation tools, given that many of the 

rules and heuristics are based on launching trains from 

stations at the extremes of the rail line, as opposed to from 

any station in between. For the proposed optimization 

model, this is a simple task, which only requires forcing 

setup binary variables to the value of one at start-of-

schedule in the sections in which trains are staged.  

It is sometimes the case in which rail operators do not 

know exactly what the maximum rail capacity of their 

system is. Frequently, they rely on historical train 

schedules and/or hypothetical estimates of maximum 

capacity. The proposed optimization model allows for a 

more accurate estimation of the useful rail system capacity, 

which may then be maximized for the existing track 

infrastructure as discussed in the previous section. 

Another very important application area is the optimal 

phasing of expansion of rail infrastructure by either 

extending existing passing loops, or adding new ones to 

the system. This can be achieved by adding a binary 

variable that corresponds to the usage of each passing loop 

expansion option, and penalizing it with its corresponding 

capital expenditure amount in the objective function. 

Therefore, given the values assigned to each completed 

train trip, the optimization will only use the extra 

expansion if the increased capacity benefit outweighs its 

required capital expenditure. 

Results 

The detailed train scheduling formulation was applied 

to a real rail system comprised of 21 sections, 16 passing 

loops and 5 different train types, representing a mixed-use 



  

 

rail corridor of 370 km. Due to the short travel times 

between stations, a time step of 10 min was used in the 

model, and all train runtimes were rounded up to the 

nearest 10 min to achieve a more conservative solution.  

The optimization model was coded in C++ and the 

problem was solved using CPLEX 12.6 on a laptop with an 

8-core Intel Core 2.40 GHz processor and 8GB of RAM. 

The optimality tolerance for all cases was set to 5%.  

Case Studies and Computational Experience 

This work started with a 2-day horizon, which was the 

current best solution achievable with a commercial 

simulation-based software package. The proposed 

formulation resulted in a large-scale MILP (Table 1, line 

1). Solution statistics are reported in Table 2.  

The Gantt chart of a typical 1-week solution is shown 

in Fig. 6. In this figure, the horizontal axis corresponds to 

the rail sections, whereas the vertical axis corresponds to 

time periods (increasing from top to bottom). This “train 

diagram” is tilted at a 90
o
 angle from its usual format 

(sections on the vertical axis and time on the horizontal 

axis) in order to improve its display in the manuscript. 

Each block color represents one train type, and the 

columns highlighted in light red represent double rail 

sections, which may contain trains in both directions 

simultaneously. 

Solve times were quite reasonable for achieving the 

first integer feasible solution for this large-scale system 

(about one minute), but CPLEX was taking a longer time 

(~20 min) to close the integrality gap to within a 5% 

tolerance. 

In recognizing the “staircase” pattern in the solution 

and the special model structure, a modification to the 

original UOPSS model was proposed: all dependent binary 

variables, originally declared as continuous variables, were 

explicitly declared as binary. While this resulted in many 

additional binary variables in the model (Table 1, line 2), it 

also allowed the optimization model to become a pure 

integer programming model (i.e., no continuous variables). 

This resulted in tremendous improvements in solve time 

and the ability to obtain the provably optimal solution still 

within CPLEX heuristics. This effect was most likely due 

to a combination of efficient CPLEX pre-solve heuristics 

and cuts, a tight UOPSS model formulation and the 

favorable, cascading solution characteristics inherent to 

rail scheduling systems.  

This is an interesting result, which further reinforces 

the well-known facts that (1) the number of binary 

variables is a poor predictor of MILP performance, and (2) 

in some instances, it may be beneficial to significantly 

increase the number of binary variables in the problem. 

These results also suggest that further research efforts 

should be directed at developing frameworks for 

systematically identifying which dependent binary 

variables in a MILP model should be explicitly declared as 

binary to improve solution speeds – which can be 

incorporated as part of commercial MILP solvers. 

Given the 18-fold improvement in solve time achieved 

by formulating this model as a pure IP (in which the final 

solution was achieved in about a minute), the original 

problem’s time horizon was extended to a full week of 

train departures. 

As can be seen in Table 1, this resulted in a model 

with over 1.3 million binary variables, 1.6 million 

equations and over 4 million nonzero elements. This model 

was solved to provable optimality in less than 20 min, still 

within the CPLEX heuristics routine. 

 

 
 

Figure 5.   Week-long Schedule, five different 
train types  

 



  
 

Table 1. Model Statistics (Pre-solved values in 
parentheses) 

Case #Variables #Equations #Non-Zeros 

2 Days 

(MILP) 

382,474 

(11,262 bin,  

26,969 cont) 

470,994 

(63,843) 

1,265,737 

(214,660) 

2 Days 

(IP) 

382,474 

(38,328 bin) 

470,994 

(63,810) 

1,265,737 

(215,328) 

7 Days 

(IP) 

1,338,634 

(235,165 bin) 

1,627,314 

(380,726) 

4,412,857 

(1,316,240) 

Table 2. Solution Performance 

Case 1st Feasible  

Solution 

(CPU s) 

Optimal  

Solution 

(CPU s) 

Gap at  

Solution 

(%) 

2 Days 

(MILP) 

74* 1,080 

(Node 20,072) 

5.0 

2 Days 

(IP) 

48* 58* 0.0 

7 Days 

(IP) 

1,132* 1,132* 0.0 

* Solution obtained within CPLEX heuristics, prior to branch-and-

bound 

Conclusion 

In this paper, a novel, detailed scheduling model for 

complex rail systems was developed, which far exceeds 

current commercial tool functionality. The model is based 

on the UOPSS modeling framework. The proposed 

approach is very flexible and generic and can be adapted to 

address any type of rail system. 

The proposed model can be used for a number of 

different purposes: (1) quick determination of feasible train 

schedules, (2) recovery from unforeseen events in the rail 

system, (3) track maintenance scheduling, (4) determining 

maximum rail system capacity, and (5) determining 

optimal capital expenditures for increased system capacity. 

This model is the basis of the patent-pending Hatch Rail 

Optimizer (HRO) software. 

The resulting large-scale model was solved for a 

week-long horizon, and yielded fast solutions using a 

standard laptop. Significant improvements to solve times 

were made by converting the original MILP formulation to 

an IP formulation. From the industrial perspective, this 

justifies studies on developing frameworks for 

automatically determining which (dependent binary) 

variables should be explicitly declared as binary in MILP 

models to speed up computation. 

Nomenclature 

ys,m,d,t - setup of section s running train m in direction d in time t.  

sus,m,d,t  - startup of section s running train m in direction d in time t.  

sds,m,d,t  - shutdown of section s running train m in direction d in time t.  

FPLipl,m,d,t - flow of train m into passing loop pl in direction d in time t. 

FPLopl,m,d,t - flow of train m out of passing loop pl  in direction d in time 

t. 

InvPLpl,m,d,t  - inventory of trains m in passing loop pl in direction d in 

time t. 

yLls,m,d,t - setup of large section ls with train m in direction d in time t. 
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