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Abstract

A re-entrant manufacturing system producing a large number of items and involving many steps can be approximately
modeled by a hyperbolic partial differential equation (PDE) according to mass conservation law with respect to a
continuous density of items on a production process. The mathematic model is a typical nonlinear and nonlocal PDE
and the cycle time depends nonlinearly on the work in progress. However, the nonlinearity brings mathematic and
engineering difficulties in practical application. In this work, we address the optimal control based on the linearized
system model and in order to improve the model and control accuracy, a modified system model taking into account the
re-entrant degree of the product is utilized to reflect characteristics of small-scale and large-scale multiple re-entrant
manufacturing systems. In this work, we solve the optimal output reference tracking problem through combination of
variation approach and state feedback internal model control (IMC) method. Numerical example on optimal boundary
influx for step-like demand rate is presented. In particular, the demand rates are generated by an known exosystem.
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Introduction

The re-entrant manufacturing system is one of the most
complex manufacturing processes, and it has the following
characteristics: there are a large number of loadings, large
quantities of machines and production steps, and a high
degree of re-entry in the system. Several model methods
have been provided in literatures for multiple re-entrant
production flows: Petri-net, queuing network, fluid network,
and partial differential equations (PDE). In this work, the
model provided in Armbruster et al. (2006) is utilized and
the expression of the velocity in the model is improved by
Dong et al. (2011).

The output regulation problem or servo-problem is one
classical and essential control problem. The problem is
formulated as regulator design for the fixed plant such that
the controlled output tracks a desired reference signal (and/or
reject disturbance) generated by an exosystem. In order to
generalize the well-developed theory of finite-dimensional
systems to infinite-dimensional systems, significant efforts
have been made: the geometric methods developed in
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Francis (1977) in finite-dimensional systems. Recently,
these geometric methods were introduced for non-spectral
hyperbolic systems in Xu and Dubljevic (2016b) and Xu
and Dubljevic (2016c). Moreover, along the same line,
finite-dimensional output and error feedback regulators
solving the regulation problem are introduced in Xu et al.
(2015) and Xu and Dubljevic (2016a). In particular, the
boundary tracking actuation approach was developed in
Deutscher (2015). In this work, we are deriving finite time
optimal control results for boundary controlled production
system by using weak variations in Athans and Falb (1966)
and constructing a boundary optimal regulator to address the
demand rate tracking problem.

The remainder of this work is organized as follows:
some notations used throughout this work are introduced in
the next section. In the third section, the problem is stated
and then the main results are demonstrated in the fourth and
fifth section, where the boundary optimal controller and the
boundary tracking regulator are designed. The proposed
approach is verified through numerical examples in the sixth
section.



Mathematical Preliminaries and Notation

In order to demonstrate the work more clearly, we first in-
troduce some preliminary mathematics. The following linear
operator used in this work is defined by

P( f (z)) :=
∫ 1

0
P(z,y) f (y)dy,z ∈ [0,1]

The inner product in this work is denoted by

〈 f (z),g(z)〉=
∫ 1

0
f (z)g(z)dz

Partial derivatives with respect to time and spatial variables t
and z are presented by ∂t =

∂

∂ t ,∂z =
∂

∂ z .

Problem Formulation

Assuming the mass conservation law and scaling the spa-
tial variable z ∈ [0,1], the large-scale re-entrant manufactur-
ing systems can be modelled by the continuity equation:

∂tρ(z, t)+∂z (v(ρ(z, t))ρ(z, t)) = 0 (1)

where ρ(z, t) describes the density of products at stage z of
production at a time t and v(ρ(z, t)) is a velocity function
depending on the density ρ(z, t) only. The product rates u(t)
and y(t) entering and existing the production system at z = 0
and z = 1 are defined as follows:

u(t) = v(ρ(z, t))ρ(z, t)|z=0 (2)

y(t) = v(ρ(z, t))ρ(z, t)|z=1 (3)

The total load in the production line L(t) (work-in-progress
(WIP)) is defined by L(t) =

∫ 1
0 ρ(z, t)dz and the velocity

v(ρ(z, t)) is chosen as the function of L(t) to describe the
equilibrium velocity of the factory. It should be noted that
the velocity function is bounded, positive and monotonically
decreasing. Obviously, we have the nonnegative influx u(t)
and nonnegative initial data ρ(z,0) = ρ0(z), the density will
definitely remain nonnegative. Usually, the velocity can be
described by

v(ρ(z, t)) = v0

(
1− L(t)

Lmax

)
(4)

where v0 denotes the empty system velocity and Lmax is the
maximal load of the factory. Naturally, the velocity is de-
termined by the total WIP. The production process can be
described as an equivalent M/M/1 queue. Let ρss denote the
steady state density and then the mean cycle time in steady
state is τss = 1/vss. Since the steady state velocity is the same
for all items in the queue, the time that an item spends in the
machines without waiting is 1/vmax. Based on queuing the-
ory, the cycle time τ = (1+L)/vmax is obtained, the steady

state velocity thus becomes:

v(ρ(z, t)) =
vmax

1+
∫ 1

0 ρ(z, t)dz
=

vmax

1+L(t)
(5)

The expression in (5) is widely utilized to describe the rela-
tion between v and ρ for large-scale multiple re-entrant sys-
tems. Obviously, due to the integration in L(t), the velocity v
is only function of time t, equation (1) can be rewritten as:

∂tρ(z, t)+ v∂z (ρ(z, t)) = 0,z ∈ [0,1], t > 0 (6)

In reality, the production system velocity depends not only
on the WIP, but also on the re-entrant factor α defined as the
ratio of the product processing time of re-entrant steps and
the total processing time, i.e. α = P1

P1+P2
= P1

Ptol
. Here, P1

is the re-entrant processing time and P2 is the non-re-entrant
processing time. Ptol denotes the total processing time. In
the non-re-entrant process, let m denote the number of total
workstations, then the improved velocity is given by:

v =
vmax

1+
(

α2 +(1−α)2/m
)

L(t)
= Φ(L(t)) (7)

In the following, we start to do the linearization of the model
(2), (3) and (6). To this end, let

ρ̃(z, t) := ρ(z, t)− ρ̄, L̃(t) := L(t)− ρ̄, ρ̃0(z) := ρ0(z)− ρ̄,

ṽ(t) := v
(
ρ̄ + L̃(t)

)
, ũ(t) := ṽ(t)ρ̃(0, t), ỹ(t) := ṽ(t)ρ̃(1, t).

Then, the system can be rewritten as follows:

∂t ρ̃(z, t)+ ṽ(t)∂zρ̃(z, t) = 0,z ∈ (0,1), t > 0
ρ̃(0, t) = ρ̃0(z),z ∈ (0,1),
ũ(t) = ṽ(t)ρ̃(0, t),
ỹ(t) = ṽ(t)ρ̃(1, t).

Taking Taylor expansion of ṽ(t) at L(t) = ρ̄ gives:
v(ρ(z, t)) = Φ(L(t)) = Φ(ρ̄) + Φ′(ρ̄)(L(t)− ρ̄) +

O
(
(L(t)− ρ̄)2

)
. If we use the first term of taylor ex-

pansion of v(ρ) to approximate itself, the linearized model
around ρ̄ is then given by:

∂t ρ̃(z, t)+ v(ρ̄)∂zρ̃(z, t) = 0,z ∈ (0,1), t > 0
ρ̃(0, t) = ρ̃0(z),z ∈ (0,1),
ũ(t) = v(ρ̄)ρ̃(0, t),
ỹ(t) = v(ρ̄)ρ̃(1, t).

(8)

In order to avoid huge error caused by the linearization, we
add the following model improvement strategy:



Figure 1. The sketch of model improvement strategy.

As shown in Figure 1, when the average density reaches
to ρ̄d from ρ̄1, we can divide the difference between ρ̄d and
ρ̄1 into number d intervals. Then, we can chose v(ρ̄1) as the
velocity from T1 to T2 and chose v(ρ̄k) from Tk−1 to Tk, i.e.
after the density reaches to ρ̄k−1. Therefore, we rewrite the
model (8) as:

∂t ρ̃(z, t)+ v(ρ̄k)∂zρ̃(z, t) = 0,z ∈ (0,1), t > 0
ρ̃(0, t) = ρ̃0(z),z ∈ (0,1),
ũ(t) = v(ρ̄k)ρ̃(0, t),
ỹ(t) = v(ρ̄k)ρ̃(1, t).

(9)

with k = 1, · · · ,d and d = (ρ̄d− ρ̄1)/∆ρ + 1. The final and
vital target in manufacturing is the controlling the production
rate of production systems. If we produce too much of an
item, holding cost/stocktaking occurs and while producing to
little of an item will result in lost in sales. In order to increase
profitability, it is important for a production system to match
its projected demand optimally. Although demand may be
stochastic, there are numerous ways to generates the demand
forecast for the next day, week, month, etc. Accordingly, the
objectives in this work are as follows:

(i). Since the system (9) is a boundary controlled hyper-
bolic PDE system, the first important mission is to
guarantee the closed-loop system stability. In this
work, a boundary optimal state feedback regulator is
designed to achieve the optimal stability.

(ii). In order to match the projected demand dr, the bound-
ary tracking regulator has to be designed. In other
words, we have to realize:

lim
t→+∞

e(t) = lim
t→+∞

(y(t)−dr) = 0 (10)

Without loss of generality, in Figure 1, we can use
ρ̄d to express dr as: dr = v(ρ̄d)ρ̄d . To achieve (10),
we need to design boundary controllers at every kth
step, for k = 1, · · · ,d. Since we divide the difference
ρ̄d − ρ̄1 into same intervals, i.e. ∆ρ , we just need to

control the linearized system (9) at every kth step such
that the density ρ̃ achieves to ∆ρ . Finally, if we add
all resulting control signals from every kth step to the
original nonlinear model (1)–(3), the density ρ in (1)–
(3) can reach ρ̄d . In this work, we employ the idea
from IMC to achieve the boundary tracking control,
i.e. lim

t→+∞
ẽρ(t) = lim

t→+∞
(ρ̃(1, t)−∆ρ) = 0 and thus

lim
t→+∞

ẽ(t) = lim
t→+∞

(ỹ(t)− v(ρ̄k)∆ρ) = 0.

Optimal Controller Design

For the linearized model (9), we first define a cost func-
tional J by

J(ρ̃, ũ) := 1
2
∫ T

0
[
〈ρ̃(z, t),q1(ρ̃(z, t))〉+Rũ2(t)

]
dt

+ 1
2

〈
ρ̃(z,T ),Pf (ρ̃(z,T ))

〉 (11)

Here, the symbols q1 ≥ 0, R > 0, and Pf ≥ 0 are weighting
kernels for states, input and terminal states of the closed-loop
system. In particular, the positivity of R is used to guarantee
the boundedness of control signals.

Open-loop Controller

We minimize the cost functional J subject to the con-
straints introduced by PDE-dynamics, i.e. the following op-
timization:

minJ(ρ̃, ũ) subject to (12)

∂t ρ̃(z, t)+ v(ρ̄k)∂zρ̃(z, t) = 0 (13)

ũ(t) = v(ρ̄k)ρ̃(0, t) (14)

ρ̃(z,0) = ρ̃0(z) (15)

v(ρ̄k) =
vmax

1+
(

α2 +(1−α)2/m
)

ρ̄k

(16)

The following theorem provides necessary conditions such
that the above constraint minimization problem can be solved
and the open-loop control problem of (9) in finite-time hori-
zon can be addressed.

Theorem 1 Consider the linear hyperbolic PDEs given by
(9) defined on the finite-time horizon t ∈ [0,T ] and the cost
function (11). If we define the nominal states, control and
co-states that minimize the cost function as: ρ̃∗(z, t), ũ∗(t),
and λ (t), then the necessary conditions for optimality are as
follows:

∂t ρ̃
∗(z, t)+ v(ρ̄k)∂zρ̃

∗(z, t) = 0 (17)

∂tλ + v(ρ̄k)∂zλ +q1(ρ̃
∗) = 0 (18)

with boundary conditions:

ũ∗(t) = v(ρ̄k)ρ̃
∗(0, t),λ (1, t) = 0 (19)



and initial/terminal conditions:

ρ̃
∗(z,0) = ρ̃0(z),λ (z,T ) = Pf (ρ̃

∗(z,T )) (20)

where the optimal control input is:

ũ∗ =− 1
R

λ (0, t) (21)

Proof: omitted due to page limit.

State-feedback Controller

Now, we are considering the state-feedback controller de-
sign problem. First, we define the following linear transfor-
mation that relates the co-state λ to the state ρ̃:

λ (z, t) =
∫ 1

0
P(z,y, t)ρ̃∗(y, t)dy (22)

Moreover, the terms in previous section are denoted by:

q1 (ρ̃
∗(z, t)) =

∫ 1
0 q1(z,y)ρ̃∗(y, t)dy

Pf (ρ̃
∗(z,T )) =

∫ 1
0 Pf (z,y)ρ̃∗(y,T )dy

Then, we have the following result for the boundary con-
trolled linear coupled hyperbolic PDE systems.

Theorem 2 The optimal boundary control in state-feedback
form is given by:

ũ∗ =− 1
R

∫ 1

0
P(0,y, t)ρ̃∗(y, t)dy (23)

where the spatial varying transformation kernel P(z,y) is the
solution of the following differential Riccati equations:

∂tP(z,y, t)+ v(ρ̄k)∂zP(z,y, t)+ v(ρ̄k)∂yP(z,y, t)
+q1(z,y)− 1

R P(z,0, t)P(0,y, t) = 0
(24)

with boundary conditions:

P(z,1, t) = 0,P(1,y, t) = 0 (25)

and terminal condition:

P(z,y,T ) = Pf (z,y) (26)

Proof: To proof this theorem, one just needs to evaluate λ in
(18), (19) and (20) using the linear transformation (22). One
boundary condition for P(1,y, t) is directly resulted from the
boundary conditions in (19) and the other boundary condition
for P(z,1, t) arises from integration by parts.
Consequently, for the infinite-time horizon, the steady-state
solution of (24)–(26) is given by:

v(ρ̄k)∂zPss(z,y)+ v(ρ̄k)∂yPss(z,y)
+q1(z,y)− 1

R Pss(z,0)Pss(0,y) = 0
Pss(z,1) = 0,Pss(1,y) = 0

and the time-invariant steady-feedback control law is given
by:

ũ∗ =− 1
R

∫ 1

0
Pss(0,y)ρ̃∗(y, t)dy

Demand Tracking

In this section, we will apply the technique motivated by
IMC to reduce the mismatch between the outflux and a de-
mand rate target. Once the demand rates are predicted, we
are able to find out the value of v(ρ̄k)∆ρ according to dif-
ferent values of number d given in Figure 1. Therefore, we
can use an finite-dimensional exosystem to generate the sig-
nal v(ρ̄k)∆ρ for the controller of the production system. The
exosystem can be defined by:

ẇ(t) = Sw(t),w(0) ∈ Cn (27)

v(ρ̄k)∆ρ = qrw(t), t ≥ 0 (28)

with qr matrix of appropriate dimensions which is assumed
to be known for the regulator design.

Assumption 1 S : D(S) ⊂ Cn→ Cn is a diagonal or diago-
nalizable matrix having all its eigenvalues on the imaginary
axis, i.e. σ(S) = (λk)k=1,...,n. In particular, one of λk can
be chosen as zero. Moreover, we assume that (φk)k=1,...,n are
eigenvectors of S and form an orthonormal basis of Cn. This
allows the modeling of steplike and sinusoidal exogenous sig-
nals.

To solve the demand rate tracking problem, the optimal state
feedback controller with a feedforward of the signal model
states is considered:

ũ(t) =− 1
R

∫ 1

0
Pss(0,y)ρ̃(y, t)dy+ v(ρ̄k)mT

ww(t) (29)

The feedback gain P(0,y) is a solution of differential equa-
tions in Theorem 2 and the feedforward gain mT

v has to be
determined. We have the following result which provides a
choice of mT

v .

Theorem 3 The feedforward gain for the signal model states
has the following form:

mT
w =

1
v(ρ̄k)R

∫ 1

0
Pss(0,y)mT (y)dy+mT (0) (30)

such that the tracking contorl can be achieved, where the spa-
tial varying vector mT (z) is the solution of the following reg-
ulator equations:

v(ρ̄k)dzmT (z)+mT (z)S = 0 (31)

with boundary conditions:

mT (1) =
1

v(ρ̄k)
qT

r (32)



Proof: In order to determine the feedforward gain mT
v , we

introduce for (9) and (27) error states:

e(z, t) = ρ̃(z, t)−mT (z)w(t) (33)

where mT (z) has to be found. By applying (9), (27) and (33),
one obtains:

∂te(z, t)+ v(ρ̄k)∂ze(z, t) = 0 (34)

if mT (z) satisfies the following condition:

v(ρ̄k)dzmT (z)+mT (z)S = 0 (35)

The boundary condition for e(z, t) is given by:

v(ρ̄k)e(0, t) =−
1
R

∫ 1

0
Pss(0,y)e(y, t)dy (36)

if mT (0) satisfies the following condition:

mT
w =

1
v(ρ̄k)R

∫ 1

0
Pss(0,y)mT (y)dy+mT (0)

Finally, the tracking error ẽ(t) becomes:

ẽ(t) = v(ρ̄k)e(1, t) (37)

if the following condition holds:

mT (1) =
1

v(ρ̄k)
qT

r

According to the illustration in previous sections, the error
system (34) with (36) is stable optimally and therefore the
tracking error e(t) in (37) decays to zero optimally, which
proves the tracking control is achieved. Moreover, summa-
rizing equations with respect to mT (z) yields the conclusion
of the theorem. This concludes the proof.

Remark 1 Rewriting the control law in (29) gives:

ũ(t) =− 1
R
∫ 1

0 Pss(0,y)ρ̃(y, t)dy

+
(

1
R
∫ 1

0 P(0,y)mT (y)dy+v(ρ̄k)mT (0)
)

w(t)
(38)

The exosystem is constructed according to the predicted de-
mand rate, the state of exosystem w(t) is easily obtained and
is known to the controller (38). However, the full state ρ̃(z, t)
is not easily obtained. In this case, we can apply the control
law:

ũ(t) =− 1
R λ (0, t)

+
(

1
R
∫ 1

0 Pss(0,y)mT (y)dy+v(ρ̄k)mT (0)
)

w(t)
(39)

Numerical Simulation

In this section, we will use a mini-fab model shown
in Figure 2 to study the proposed approach. The mini-
fab model is chosen since it has all important characteris-
tics of the re-entrant manufacturing systems such as batch

Figure 2. Process flow diagram of the mini-fab.

Table 1. Processing time of product at each step.

Machining centres Processing time (hours)
Machine A & B Step 1: 1.5 Step 5: 1.5
Machine C & D Step 2: 0.5 Step 4: 1
Machine E & F Step 3: 1 Step 6: 0.5

production, re-entrant and in particular different processing
time. Now, we assume that there is a product in the mini-
fab model and in Table 1 processing steps and processing
time are given. According to Figure 2, m = 3 and the steps
4-6 are re-entrant steps. Table 1 provides: P1 = 3 (hours)
and P = 6 (hours), so the re-entrant factor is α = 0.5 and
vmax = 1/P = 4 (units/day). Without loss of generality,
we assume that the system stays in steady-state with influx
given in (2): u(t) = 4 (units/day). Therefore, the corre-
sponding steady density ρ̄1 is the solution of the equation:
v(ρ̄1)ρ̄1 = vmax

1+(α2+(1−α)2/m)ρ̄1
ρ̄1 = 4 and therefor ρ̄1 = 1.5.

We assume the demand rate to be tracking is dr(t) = 60
11 and

thus ρd = 2.5. As shown in Figure 1, we discuss the perfor-
mances of the proposed approach by assuming the different
values of d, e.g. d = 2 or d = 3, see Table 2. Based on

Table 2. Different values of d.

d ∆ρ v(ρ̄k)

d = 2 ∆ρ = 1 v(ρ̄1) = 8/3
d = 3 ∆ρ = 0.5 v(ρ̄1) = 8/3,v(ρ̄2) = 2.4

the conclusion of previous theory sections, we start applying
boundary optimal tracking control law to the original nonlin-
ear model (1)–(3) motivated by (29). According to different
division number d, we have the following discussion:
For the case: d = 3, we need to solve the following differen-
tial Riccati equations and regulator equation:

v(ρ̄k)∂zPkss(z,y)+ v(ρ̄k)∂yPkss(z,y)
+q1(z,y)− 1

R Pkss(z,0)Pkss(0,y) = 0
v(ρ̄k)dzmT

k (z)+mT
k (z)S = 0

Pkss(z,1) = 0,Pkss(1,y) = 0
mT

k (1) =
1

v(ρ̄k)
qT

r ,k = 1,2



and then the control law is given by:

u1(t) =


v(ρ̄1)ρ̄1− 1

R
∫ 1

0 P1ss(0,y)(ρ(y, t)− ρ̄1)dy
+v(ρ̄1)mT

1ww(t), ρ̄1 ≤ ρ(1, t)≤ ρ̄2

v(ρ̄2)ρ̄2− 1
R
∫ 1

0 P2ss(0,y)(ρ(y, t)− ρ̄2)dy
+v(ρ̄2)mT

2ww(t), ρ̄2 ≤ ρ(1, t)≤ ρ̄d

(40)

with mT
kw = 1

v(ρ̄k)R

∫ 1
0 Pkss(0,y)mT

k (y)dy+mT
k (0), k = 1,2.

While for the case: d = 2, we need to solve the following
equations for the control law in (38):

v(ρ̄1)∂zP1ss(z,y)+ v(ρ̄1)∂yP1ss(z,y)
+q1(z,y)− 1

R P1ss(z,0)P1ss(0,y) = 0
v(ρ̄1)dzmT

1 (z)+mT
1 (z)S = 0

P1ss(z,1) = 0,P1ss(1,y) = 0
mT

1 (1) =
1

v(ρ̄1)
qT

r

and the control law is given by:

u2(t) = v(ρ̄1)ρ̄1− 1
R
∫ 1

0 P1ss(0,y)(ρ(y, t)− ρ̄1)dy
+v(ρ̄1)mT

ww(t)
(41)

with mT
w = 1

v(ρ̄1)R

∫ 1
0 P1ss(0,y)mT

1 (y)dy+mT
1 (0).
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Figure 3. Influx (green dashed line), outflux(solid line and
black dashed line), and demand rate (red dashed line) for a
step demand function from 4 to 5.4545 at t = 1.

From Figure 3, in order to achieve the desired demand
rate, we need to increase the influx (see green dashed line),
which causes that the average velocity decreases. Therefore,
the outflux will decrease first (see black dashed line and blue
solid line) since the density ρ(1, t) does not change but the
velocity decreases. Note that in Figure 3, the blue line de-
notes the outflux under the control law u1(t) in (40) and the
black dashed line presents the outflux under the control law
u2(t) in (41). It is shown that under the control u1(t), the out-
flux can reach to the desired demand rate more accurately.

Conclusion

This work addressed the optimal demand rate tracking
problem for the production manufacturing system based on

a continuum model. Due to the complexity that the nonlin-
earity brings, all results of this work are derived based on the
linearized production system model. To solve the optimal
stabilization of the resulting linear production system model,
a weak variation approach is utilized and the corresponding
open-loop and state feedback boundary control laws are ob-
tained. Furthermore, based on the resulting state feedback
stabilization control law, the boundary tracking regulator is
constructed. In particular, the optima stabilization yields op-
timal reference demand rate tracking and this conclusion can
be obtained from the proof part of Theorem 3. Finally, the
proposed approach is verified through a numerical example
where we applied the resulting control law to the original
nonlinear manufacturing system and the performance of the
tracking controller is shown in Figure 3.
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