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Abstract

In this paper, we introduced a novel method for asymmetric uncertainty set construction based on the

distributional information of sampling data. Deterministic robust counterpart optimization formulation

is derived for D-norm induced uncertainty set with the proposed method. Furthermore, the asymmetric

set induced robust optimization model is compared with the classical symmetric set induced robust

optimization model. A numerical example and a reactor design problem are investigated. The results

demonstrate that using asymmetric uncertainty set leads to less conservative robust solution.
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Introduction

As a modeling framework for immunizing against uncer-

tainty in mathematical optimization, robust optimiza-

tion has received lots of attention in recent years. Ro-

bust optimization relies on appropriately defining an un-

certainty set, and solving a deterministic robust coun-

terpart, to ensure worst-case feasibility over the uncer-

tainty set.

A general guideline for uncertainty set construction

in robust optimization is that it should not lead to overly

conservative or computationally challenging determinis-

tic robust counterpart formulations. Traditionally, un-

certainty set has been defined as symmetric type. Soys-

ter (1973) introduced the interval based box type uncer-

tainty set. Ben-Tal and Nemirovski (2000) introduced

ellipsoidal type of uncertainty set for robust linear op-

timization. Bertsimas et al. (2004) introduced general

norm induced uncertainty set for robust linear optimiza-

tion. This is the most general type of symmetric un-

certainty set, which can lead to various symmetric set

under different type of norms. Li et al. (2011) and Li

et al. (2012) made a comparative study of various sym-

metric set induced robust optimization models and their
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probabilistic guarantees. Yuan et al. (2016) studied ro-

bust linear optimization under correlated uncertainty,

and demonstrated the advantage of introducing correla-

tion information into the uncertainty set construction.

To capture the asymmetric distribution, Chen et al.

(2007) introduced deviation measures to capture dis-

tributional asymmetry, however they assumed that the

primitive uncertain parameters are independent. In this

paper, we introduced a novel method for asymmetric

uncertainty set construction based on the distributional

information or sampling data of uncertain parameters.

Correlation between primitive uncertain parameters can

be captured in the proposed method. Deterministic ro-

bust counterpart formulation is derived based on the

proposed uncertainty set. We also derived the specific

robust formulation under D-norm, which leads to a lin-

ear optimization problem.

In the subsequent sections, we first present the gen-

eral norm-induced symmetric uncertainty set and the ro-

bust counterpart. Then, we present the proposed asym-

metric uncertainty set construction method and demon-

strate some data-driven uncertainty set examples. Next,

the robust counterpart optimization constraint is de-

rived. Furthermore, the proposed asymmetric set in-

duced robust optimization model is compared to the

classical symmetric set induced model. A numerical ex-



ample and a reactor design problem are investigated,

both demonstrate that using asymmetric uncertainty set

leads to less conservative robust solution.

Robust optimization with symmetric uncertainty

set

Consider an optimization problem with uncertain

linear constraints. Without loss of generality, assume

there are p number of primitive uncertain parameters

(ξ1, · · · , ξp) in all the uncertain constraints. After re-

arrangement (and introducing auxiliary variable if nec-

essary), we can get following general i-th linear con-

straint of an uncertain optimization optimization prob-

lem: yi0 +
p∑
k=1

ξky
i
k ≤ 0. Consider the vector form of the

constraint

yi0 + ξT yi ≤ 0 (1)

where yi = [yi1, · · · , yip]T , ξ = [ξ1, · · · , ξp]T . The robust

constraint is formulated as

yi0 + max
ξ∈U

ξT yi ≤ 0 (2)

to ensure worst-case feasibility under the uncertainty set

U for uncertain parameters ξ.

Symmetric uncertainty set

A general norm-induced symmetric uncertainty set

can be formulated as

U =
{
ξ|‖M(ξ − ξ̄)‖ ≤ ∆

}
(3)

where M ∈ Rp×p is a invertible matrix, ξ̄ represents the

nominal value of the uncertain parameters, ∆ is the set

size. The norm ‖·‖ in the above formulation can be arbi-

trary vector norm. In the literature, lp-norm has been a

popular choice. For a vector x = (x1, · · · , xn) ∈ Rn, and

a parameter p (p ≥ 1), the standard lp-norm is defined

as ‖x‖p = (
∑n
i=1 |xi|p)

1
p . Its special cases include: l1-

norm ‖x‖1 =
∑n
i=1 |xi|; l2-norm ‖x‖2 =

(∑n
i=1 |xi|2

) 1
2 ;

l∞-norm: ‖x‖∞ = maxi |xi|. Another useful norm is

the so-called D-norm introduced by Bertsimas and Sim

(2004). For a vector x = (x1, · · · , xn) ∈ Rn, and a pa-

rameter Γ (1 ≤ Γ ≤ n), D-norm is defined as:

‖x‖DΓ = max
{S∪{t}|S⊆N,|S|≤bΓc,t∈N\S}

∑
i∈S
|xi|+(Γ−bΓc)|xt|

(4)

where N = {1, · · · , n}. Note that D-norm can be re-

duced to special cases of lp-norm: ‖x‖DΓ=1 = ‖x‖∞,

‖x‖DΓ=n = ‖x‖1.

Matrix M is used in the above uncertainty set model

to scale the uncertain parameters. It should be selected

as an invertible matrix. Typically it can be selected as

follows:

• If ξi are bounded with ξi ∈ [ξ̄i − di, ξ̄i + di], we can

set M = diag
{

1
d1
, · · · , 1

dp

}
• If ξi are unbounded, but with known variance in-

formation, we can use the covariance matrix Σ of ξ

and set M = Σ−
1
2

Figure 1. Symmetric uncertainty set (left: for indepen-

dent uncertainty; right: for correlated uncertainty)

Figure 1 shows the D-norm induced uncertainty set

(3), with ξ̄ = [0, 0], set size ∆ = 1 and different Γ

value {1.1, 1.3, 1.5, 1.7, 1.9}. The left figure is gener-

ated with M = [5, 0; 0, 0.5] which corresponds to in-

dependent uncertainty with d1 = 0.2, d2 = 2, whereas

the right figure is for M = [5, 0.3; 0.3, 0.5], which corre-

sponds to correlated uncertainty with covariance matrix

Σ = [0.451,−0.066;−0.066, 1.439]. For both figures, the

largest set on the figure is for Γ = 1.1, and the smallest

set is for Γ = 1.9.

Robust counterpart constraint formulation

Property 1. Under the general norm-induced uncer-

tainty set (3), the robust constraint (2) is equivalent to

yi0 + ξ̄Tyi + ∆‖M−Tyi‖∗ ≤ 0 (5)

where ‖·‖∗ is the dual norm.

Proof. Define s = M(ξ−ξ̄)
∆ , then ξ = ∆M−1s+ξ̄, and the

uncertainty set is equivalent to {s|‖s‖ ≤ 1}, the inner

maximization problem in (2) can be evaluated as

max
ξ∈U

ξT yi = max
s:‖s‖≤1

∆(M−1s)T yi + ξ̄T yi

= ξ̄T yi + ∆ max
s:‖s‖≤1

sT (M−T yi) = ξ̄T yi + ∆‖M−T yi‖∗

Note the last equality is based on the definition of dual

norm.



For lp-norm, its dual norm is given as ‖x‖∗p = ‖x‖q,
with q = 1 + 1

p−1 . Specially: ‖x‖∗1 = ‖x‖∞; ‖x‖∗2 =

‖x‖2; ‖x‖∗∞ = ‖x‖1. The dual norm of D-norm is

‖x‖D∗Γ = max
{
‖x‖∞,

1
Γ‖x‖1

}
, as shown in Bertsimas

et al. (2004). For an uncertain linear constraint, when

the uncertainty set is a polyhedron, the robust counter-

part is linear. In this work, we focus on the norm that

leads to polyhedral uncertainty set which is linear pro-

gramming representable, such that the robust counter-

part constraint is still linear. Using the D-norm (which

include the l1-norm and l∞-norm as special cases), we

can get the following robust counterpart formulation.

Property 2. Under D-norm ‖·‖DΓ induced uncertainty

set (3), the robust counterpart (2) is equivalent to

yi0 + ξ̄Tyi + ∆ · z ≤ 0

z ≥ uk, k = 1, · · · , p
z ≥ 1

Γ

∑p
k=1 uk

−uk ≤ tk ≤ uk, k = 1, · · · , p
t = M−Tyi

(6)

Proof. Apply D-norm and introduce auxiliary variable

z, the constraint (2) becomes
yi0 + ξ̄Tyi + ∆ · z ≤ 0

z ≥ ‖t‖D∗Γ

t = M−Tyi

Apply the dual D-norm ‖t‖D∗Γ = max
{
‖t‖∞,

1
Γ‖t‖1

}
,

yi0 + ξ̄Tyi + ∆ · z ≤ 0

z ≥ ‖t‖∞
z ≥ 1

Γ‖t‖1
t = M−Tyi

Apply the definition of l1-norm, l∞-norm, it leads to
yi0 + ξ̄Tyi + ∆ · z ≤ 0

z ≥ |tk|, k = 1, · · · , p
z ≥ 1

Γ

∑p
k=1 |tk|

t = M−Tyi

Lastly, linearize the absolute value term |tk| using new

variable uk, then we get the robust counterpart.

Asymmetric uncertainty set

While the uncertain parameter follow asymmetric dis-

tribution, an asymmetric uncertainty set is more appro-

priate for robust optimization. This will be shown by

examples in the subsequent section. Two types of asym-

metric uncertainty sets are presented in this section to

address independent and correlated primitive uncertain

parameters, respectively.

Independent primitive uncertainty

Consider a random vector ξ = (ξ1, · · · , ξp) ∈ Rp, as-

sume its nominal value is ξ̄. Assume the parameters are

independent. Define the positive and negative perturba-

tion part of ξ respectively as:ξ+ = max{ξ − ξ̄, 0}, ξ− =

max{−(ξ−ξ̄), 0}, then we have the following relationship

ξ− ξ̄ = ξ+−ξ−. This can be easily verified: if ξ− ξ̄ ≥ 0,

then ξ+ − ξ− = max{ξ − ξ̄, 0} − max{−(ξ − ξ̄), 0} =

ξ − ξ̄ − 0 = ξ − ξ̄; if ξ − ξ̄ ≤ 0, then ξ+ − ξ− =

max{ξ−ξ̄, 0}−max{−(ξ−ξ̄), 0} = 0−(−(ξ−ξ̄)) = ξ−ξ̄.
Consider the following norm-induced uncertainty set

proposed by Chen et al. (2007)

U =

{
ξ

∣∣∣∣∣ ξ = ξ̄ + (ξ+ − ξ−), ξ+ ≥ 0, ξ− ≥ 0

‖Pξ+ +Qξ−‖ ≤ ∆

}
(7)

where P ∈ Rp×p, Q ∈ Rp×p, and ‖·‖ is a general norm.

We are specially interested in the following selection of

P and Q:

• If ξi are bounded with ξi ∈ [ξ̄i − d−i , ξ̄i + d+
i ], that

is, 0 ≤ ξ+
i ≤ d+

i and 0 ≤ ξ−i ≤ d−i , we set P =

diag
{

1
d+1
, · · · , 1

d+p

}
, Q = diag

{
1
d−1
, · · · , 1

d−p

}
• If ξi are unbounded, but with known variance

information for ξ+
i and ξ−i . Assume the stan-

dard deviation for ξ+
i is σ+

i and the standard

deviation for ξ−i is σ−i , then we can set P =

diag
{

1
σ+
1

, · · · , 1
σ+
p

}
, Q = diag

{
1
σ−
1

, · · · , 1
σ−
p

}
Correlated primitive uncertainty

Consider a random vector ξ = (ξ1, · · · , ξp) ∈ Rp, as-

sume its nominal value is ξ̄, and covariance matrix is

Σ. Define η = ξ − ξ̄, then η also has covariance matrix

Σ. Assume the unitary matrix of eigenvectors of matrix

Σ is Φ, define µ = ΦT η, then µi are independent and

the covariance matrix of µ is a diagonal matrix with its

main diagonal element being the eigenvalues of Σ. This

is a de-correlation procedure on random vector η. Define

the positive and negative perturbation part of µ respec-

tively as: µ+ = max{µ, 0}, µ− = max{−µ, 0}, then we

have the following relationship µ = µ+ − µ−. Consider

the following norm-induced uncertainty set

U =

{
ξ

∣∣∣∣∣ ΦT (ξ − ξ̄) = µ+ − µ−, µ+ ≥ 0, µ− ≥ 0

‖Pµ+ +Qµ−‖ ≤ ∆

}
(8)

where P ∈ Rp×p, Q ∈ Rp×p, and ‖·‖ is a general norm.

For the independent primitive uncertainty case, the se-

lection of P and Q is based on ξ+, ξ−. Similarly to the



construction of uncertainty set (7), we consider the fol-

lowing selection of P and Q based on the distribution of

µ+, µ−. It is obvious that uncertainty set (8) is reduced

to the special case of (7) for independent uncertainty

with Φ = I.

Figure 2. Asymmetric uncertainty set (left: for inde-

pendent uncertainty; right: for correlated uncertainty

Figure 2 shows the D-norm induced asymmetric uncer-

tainty set (7) and (8), with set size ∆ = 1 and Γ takes

value {1.1, 1.3, 1.5, 1.7, 1.9}. The left figure is based on

d+
1 = 2, d+

2 = 1, d−1 = 0.5, d+
2 = 2, whereas the right

figure is based on Φ = [1,−0.25;−0.25, 2],σ+
1 = 2, σ+

2 =

1, σ−1 = 0.5, σ+
2 = 2.

Data-driven uncertainty set construction

While the exact distributional information of uncer-

tainty may not be available in practical applications,

data-driven method can be applied for uncertainty set

construction. The following examples demonstrated the

method.

Figure 3. Data-driven symmetric and asymmetric set

(for independent uncertainty, with marginal lognormal

distributions)

In the first example, 2000 samples were generated from

two random variables ξ1 and ξ2 using independent log-

normal distribution logN (0, 0.25). Assume uncertainty

sets are constructed around the nominal point ξ̄ =

[0.8, 0.8]. The matrix M used for symmetric set, and

Φ, P,Q used for asymmetric set are estimated from the

data following the procedure introduced in the previous

section. Figure 3 shows the D-norm (with ‖·‖DΓ=1.5) in-

duced symmetric and asymmetric uncertainty with set

size ∆ = 2.0.

Next, we consider a correlated distribution case. As-

sume ξ1 follows a Gamma distribution Γ(2, 1) and ξ2

follows a t distribution with 5 degrees of freedom. Sim-

ilarly, 2000 samples were generated. Assume uncer-

tainty sets are to be constructed around the nomi-

nal point ξ̄ = [1,−0.5]. Figure 4 shows the D-norm

(with ‖·‖DΓ=1.5) induced symmetric and asymmetric un-

certainty sets with size ∆ = 1.0, respectively.

Figure 4. Data-driven symmetric and asymmetric set

(for correlated uncertainty, with marginal Gamma and

t distributions)

In the above figures, the polyhedra represent the un-

certainty sets constructed. Colored scatter plot of the

data was displayed to show the density of the distribu-

tion. The figures show that the asymmetric uncertainty

sets better capture the correlation between two uncer-

tain parameters. It is observed that the symmetric set is

larger while using the same set size and Γ parameter of

D-norm. Furthermore, while the symmetric uncertainty

set unnecessarily covered some low density region, asym-

metric uncertainty set fits better to the joint distribu-

tion. This will lead to less conservative robust solution,

as demonstrated later by case studies.

Robust optimization with asymmetric uncer-

tainty set

In this section, the deterministic robust counterpart

based on the proposed new asymmetric uncertainty set

(8) is derived. The uncertainty set under general norm

is first studied, then the result is extended to the special

D-norm case.

Property 3. Under the uncertainty set (8), the robust



constraint (2) is equivalent to
yi0 + (yi)T ξ̄ + ∆‖t‖∗ ≤ 0

t ≥ P−1Φ−1yi

t ≥ −Q−1Φ−1yi

t ≥ 0

(9)

Proof. First, the inner maximization problem

maxξ∈U ξ
T yi is equivalent to maxξ∈U (yi)T ξ, or

max
ξ,µ+,µ−

(yi)T ξ

s.t. ΦT (ξ − ξ̄) = µ+ − µ−

‖Pµ+ +Qµ−‖ ≤ ∆

µ+ ≥ 0, µ− ≥ 0

Notice that ξ = ξ̄ + Φ−T (µ+ − µ−), so we have

max
µ+,µ−

(yi)T ξ̄ + (yi)TΦ−Tµ+ − (yi)TΦ−Tµ−

s.t. ‖Pµ+ +Qµ−‖ ≤ ∆

µ+ ≥ 0, µ− ≥ 0

Define v = Pµ+, w = Qµ−, based on the fact that

P and Q are both diagonal matrices with all positive

diagonal elements, we have

max
v,w

(yi)T ξ̄ + (yi)TΦ−TP−1v − (yi)TΦ−TQ−1w

s.t. ‖v + w‖ ≤ ∆

v ≥ 0, w ≥ 0

Rewrite the objective function, we get

max
v,w

(yi)T ξ̄ + (P−1Φ−1yi)T v − (Q−1Φ−1yi)Tw

s.t. ‖v + w‖ ≤ ∆

v ≥ 0, w ≥ 0

the optimal objective is (yi)T ξ̄ + ∆‖t‖∗, with

tj = max{(P−1Φ−1yi)j , (−Q−1Φ−1yi)j , 0}

Finally the robust counterpart is obtained using the

above results.

Property 4. Under D-norm ‖·‖DΓ induced uncertainty

set (8), the robust counterpart (2) is equivalent to

yi0 + (yi)T ξ̄ + ∆ · z ≤ 0

z ≥ uk, k = 1, · · · , p
z ≥ 1

Γ

∑p
k=1 uk

−uk ≤ tk ≤ uk, k = 1, · · · , p
t ≥ P−1Φ−1yi

t ≥ −Q−1Φ−1yi

t ≥ 0

(10)

The proof is similar to the proof of Property 2 after

applying the D-norm and introducing auxiliary variable

z. Detailed procedure is skipped for simplicity.

Case studies

Numerical example

Consider the following example

min
x1≥0,x2≥0

2x1 + 3x2

s.t. (2 + ξ1)x1 + 6x2 ≥ 180

3x1 + (3.4− ξ2)6x2 ≥ 162

x1 + x2 ≤ 100

The two uncertain constraints can be rearranged as yi0 +
2∑
k=1

ξky
i
k ≤ 0, i = 1, 2 with

{
y

(1)
0 = 180− 2x1 − 6x2, y

(1)
1 = −x1, y

(1)
2 = 0

y
(2)
0 = 162− 3x1 − 20.4x2, y

(2)
1 = 0, y

(2)
2 = 6x2

Assume ξ1 follows a Gamma distribution Γ(2, 1),ξ2 fol-

lows a t distribution with 5 degrees of freedom, and

subject to correlation. Computational studies are per-

formed on the robust counterpart optimization model

under different set sizes for the two different uncertainty

sets. Results in Figure 5 show that the symmetric set

based solution is more conservative than the asymmetric

set induced solution.

Figure 5. Results for numerical example

Reactor design problem

Consider a reaction-separation process shown in Figure

6. Material A is fed into a reactor where it reacts to

materials B and C at an uncertain conversion ratio k.

B and C are then separated to satisfy product demand

DB and DC , which are both uncertain also. The nom-

inal values for uncertain parameters ξ = [k,DB , Dc]

are ξ̄ = [0.6, 7, 4]. Assume k follows independent nor-

mal distribution N (0.6, 0.01), DB and DC follows corre-

lated distribution with marginal lognormal distribution

logN (7, 0.01) and logN (4, 0.01), respectively.



Figure 6. Reactor-separator process

The reactor design problem is formulated as

min
mA,V,R>0

5V +R

s.t. 0.2V ≤ mA ≤ V

mA −R ≤ 0

−30−mA + 0.8V + 1.2R ≤ 0

−kmA +DB ≤ 0

−(1− k)mA +DC ≤ 0

where the first three constraints are enforced for flow

conditions, and the last two constraints are enforced for

product demands. The objective is to minimize the cost.

Figure 7. Results for reactor design problem

For this example, both symmetric and asymmetric un-

certainty sets are first generated based on sampled data

from the distributions. Then the corresponding robust

optimization models are solved. The robust solution ob-

tained under different set size and different Γ parameters

of D-norm are summarized in Figure 7. From the plot,

it is observed that the symmetric set leads to solutions

with larger cost (i.e., more conservative) than asymmet-

ric set under various cases.

Conclusions

For robust optimization, uncertainty set construction is

a key step since it affects the conservativeness and com-

putational tractability of the deterministic robust coun-

terpart. In this work, we proposed novel uncertainty set

construction method based on data, and compared the

performance of symmetric and asymmetric uncertainty

set induced robust optimization. The proposed method

can be applied to general uncertainty distributions with

or without correlation. Future work will include investi-

gating the probabilistic guarantee of the robust solution.
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