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Abstract 

Technical and market uncertainties during product launch planning can have a significant impact in the 

companies decision-making process, particularly in today’s business context of the pharmaceutical 

industry. This paper addresses this planning problem, considering both types of uncertainty and 

integrating process design and capacity decisions under limited resources. A Mixed Integer Linear 

Programing (MILP) model, with a two-step Monte Carlo Simulation (MCS) framework, is developed. 

The MCS component captures the simultaneous impact of uncertainty in product demand, in the 

outcomes of clinical trials, and in processing times, through respectively normal distributions, Bernoulli 

distributions, and uniform distributions. Results show that although the processing time variability is not 

relevant in the NPV, it inevitably affects the decision-making process by changing process design, scale 

up, and capacity extensions decisions. The proposed approach provides a robust and valuable 

information to support the medium and the long-term decisions associated with the product launch 

planning problem. 
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The pharmaceutical industry has been facing dramatically 

fast changes in the last decades, becoming more and more 

demanding and competitive. Not only the pressure by the 

regulatory agencies is always increasing, but also the 

strong competition from generics is forcing pharmaceutical 

companies to reduce prices and improve efficiency (Shah, 

2004). On the other hand, the high dependence on patent 

effective life (Grabowski & Vernon, 2000), is clearly 

driving companies to provide faster medical drugs and 

compelling them to make decisions as earlier as possible, 

during the development stage. Therefore, time-to-market 

has been considered one of the most critical issues in this 

industry (Shah, 2004), and any delays associated with 

product approval can significantly jeopardize the 

company’s ability to recover its investments. Moreover, 

not only the product, but also the production process needs 

to get a FDA approval so that the company can 

successfully launch the product into the market. This also 

means that any changes in the production process after this 

approval are not only costly, but also very time consuming. 

Thus, decisions concerning process design, production 

planning and capacity planning, are critical during new 



  
 

drug development, and need to be taken as early as 

possible even when facing a highly uncertain environment 

(Moniz et al., 2015).  In fact, uncertainty in product launch 

planning plays a very important role that cannot be 

neglected, as both technical and market uncertainties arise 

during product development. Process duration and clinical 

trials outcomes are some of the most relevant technical 

uncertainties, since they will directly affect the time-to-

market of the new drug. On the other hand, market 

uncertainty mainly concerns the variability of product 

demand during clinical trials due to changes occurring, for 

example, in dose regimes (Farid et al., 2005) or in patient 

enrollment rate (Chen et al., 2012).  

The product launch planning problem has been 

addressed in the literature mainly for portfolio 

management, and for capacity planning, although seldom 

considering the long-term process design decisions. Also, 

the integration of uncertainty into the models is still a 

complex and unsolved challenge. Verderame et al. (2010) 

presented a very interesting review of the key contributions 

in planning and scheduling optimization, with a special 

focus on uncertainty analysis. Two-stage stochastic 

programming is still the most widely used method to tackle 

uncertainty in process system engineering. Rotstein et al. 

(1999) addressed the capacity planning under clinical trial 

outcomes uncertainty, through a two-stage stochastic 

programming model that considers decisions such as 

product selection, capacity investment, allocation of 

manufacturing resources, and production plans. Many 

other authors have followed this trend. Rogers et al. (2002) 

developed a multistage stochastic program to address the 

optimal pharmaceutical research and development 

portfolio management. Decisions include the selection of 

the optimal product portfolio through a series of 

“continuation/abandonment options” for product 

development at each stage. Gatica et al. (2003) addressed 

the capacity planning problem under clinical trial outcomes 

uncertainty. In their work, a multistage stochastic 

programming formulation was also developed, considering 

scenario analysis to model the pass/fail uncertainty, but 

only for the last clinical trials phase. Decisions include the 

final product portfolio, capacity planning, and production 

planning. Levis and Papageorgiou (2004) also considered 

uncertainty in clinical trials outcomes to determine the 

product portfolio and to perform multi-site capacity 

planning. They proposed a two-stage, multi-scenario, 

mixed-integer linear programming model. More recently, 

Sundaramoorthy et al. (2012) proposed a multi-scenario, 

multi-period, mixed-integer linear programming 

formulation, considering uncertainty in the outcome of 

clinical trials for the product launch capacity planning, and 

developing an integrated framework based on continuous 

pharmaceutical manufacturing strategies. 

Even if all these works are important contributions to 

this research domain, problems arise regarding formulation 

intractability when employing the two-stage stochastic 

programming, limiting their use, for example, to address 

several uncertain parameters simultaneously. In this 

context, there is therefore a clear need for innovative 

strategies in the decision-making process, exploring the 

effects of multiple sources of uncertainty in product launch 

planning. 

Based on the authors’ previous work (Marques et al., 

2016), this study combines the developed MILP model 

with a two-step Monte Carlo simulation (MCS) 

framework, to tackle the uncertainties associated not only 

with the outcomes of the clinical trials and product 

demand, but also with processing times. The main 

contribution of this work is, therefore, the integration of 

long-term process design with medium-term production 

planning decisions, considering simultaneously several 

sources of uncertainty (clinical trials outcomes, processing 

times, and product demand). 

Problem Definition 

In this work, we consider a multipurpose batch plant 

for the primary production of two types of products: 

products under development and products already in 

commercialization. Thus, a limited amount of resources 

needs to be shared between the two production modes 

(campaign and short-term production) (Moniz et al., 2014). 

The product launch planning problem addressed in this 

study comprises the three clinical trials phases and ends 

with the regulatory approval of both the product and the 

production process, for a horizon of several years. The 

production plan is determined taking in consideration 

uncertainty in product demand, in processing times, and in 

the outcomes of clinical trials. 

Lot traceability is also a critical issue in the 

pharmaceutical industry particularly during product 

development. In that sense, process design decisions such 

as lot-sizing and scale-up decisions are explicitly modelled 

in this work.  The set of available lot-sizes for the starting 

raw materials is given. For the intermediaries, a Zero Wait 

(ZW) storage policy is considered, while, for the final 

products an Unlimited Intermediate Storage (UIS) is 

assumed, in order to cope with the product demand 

variability. However, for the products under development, 

the excess of final product at the end of each clinical trial 

cannot be reused and should be discarded. A penalty cost 

will be included in the objective function to take this 

aspect into account. 

The product launch planning problem can then be 

formally defined as follows:  

 Given: (i) a fixed time horizon discretized into equal 

periods; (ii) a set of products already in 

commercialization and under development; (iii) the 

recipes of each final product, including production 

yields; (iv) the set of processing units already installed 

in the plant and their maximum and minimum 

capacities; (v) the set of processing units available to 

add to the plant and their maximum and minimum 

capacities (vi) the task suitability for every processing 

unit; (vii) the lot sizes for each product; (viii) the 

probabilistic distributions for all the uncertain 



  

parameters (product demand, clinical trial outcomes, 

and processing times); and (ix) all the operational and 

investment costs, as well as the sales prices for each 

final product. 

 Determine the optimal product launch production plan, 

by defining: (i) the process to unit assignment; (ii) the 

timings and the sizes of scale-ups; (iii) the amounts to 

produce and store; and (iv) the capacity extensions 

required to accommodate the production of the under 

development products over the entire planning horizon. 

 Maximize the Net Present Value (NPV) of the whole 

system operation. 

Solution Approach 

In this work a significant improvement is made to the 

previously developed methodology (Marques et al., 2016), 

in order to consider uncertainty in processing times. The 

conceptual framework integrating a Mixed Integer Linear 

Programming (MILP) model with the two-step Monte 

Carlo Simulation (MCS) previously developed will be 

briefly explained in this section.  

Monte Carlo Simulation Framework 

The MCS component of the approach captures the 

effect of uncertainty by randomly sampling a significant 

number of instances of each uncertainty parameter, based 

on their probabilistic distributions. Thus, to model 

variability in product demand and processing times, 

normal and uniform distributions respectively are 

considered for both types of products. On the other hand, 

to tackle the clinical trials pass/fail uncertainty for the 

products under development, Bernoulli distributions are 

considered due to the discrete, binary nature of the 

outcomes (“success” or “failure”). A MILP model is then 

solved for each of these instances.  

A schematic representation of this framework is 

depicted in Figure 1 with the dark grey box highlighting 

the contribution of this work to the original framework. 

 

 

Figure 1. Monte Carlo simulation framework 

In the case of products already in commercialization, a 

simple random sample is computed, in each iteration, for 

the processing time of each task, and for the product 

demand for each period. However, for the products under 

development, the product demand and samples of 

outcomes of the clinical trials are computed through a two-

step procedure for each clinical trial phase (Figure 1). 

After defining the number of iterations, the random 

generation of the processing times is performed and then 

the first step is performed for the first clinical trial phase. 

In the first step, a random sample generation is executed 

for the product demand of each time period of the first 

clinical trial phase. At the end of this clinical trial phase, 

step 2 is executed with the random generation of a trial 

outcome (0=”fail” or 1=”pass”). A “pass” outcome means 

that this product will continue its development through the 

next clinical trial phase, and step 1 is performed again with 

a random generation of product demand for clinical trial 

phase II. The procedure is then repeated until the end of 

the planning period. On the other hand, if the outcome of 

the first trial is “fail”, the two-step procedure stops and the 

MILP model will be run assuming that the product demand 

for the following periods is zero for that product (this 

meaning that the product will be abandoned, and that its 

development will not continue in the following trials). 

At the end of this procedure the results are analyzed 

based on the obtained histograms and probability density 

functions.  

MILP Model 

The main goal of the model is to determine the 

optimal product launch production plan, considering the 

following key decision variables: (i) process/unit 

assignment binary variables; (ii) task batch-size continuous 

variables; (iii) number of batches defined through  integer 

variables; (iv) number of lots of a given lot-size relative to 

the starting raw material defined by integer variables; (v) 

excess resource continuous variables; (vi) final product 

waste continuous variables only for the products under 

development; (vii) continuous variables for the deliveries 

at the end of each time period; and (viii) capacity extension 

integer variables. The model includes the following set of 

constraints:  

 lot-size constraints, for the timing and sizes of scale-

ups over the planning horizon; 

 excess resource balance constraints, to determine the 

material availability over time for all materials (raw 

materials, intermediaries, and final products); 

 resource capacity constraints, to bound the material 

availability between minimum and maximum values; 

 demand constraints imposing production requirements; 

 batch size constraints, to ensure that the total amount 

processed is bounded by the processing units capacity; 

 production capacity constraints (the time available for 

each processing unit and period, including capacity 

extensions), with a distinction between products in 

commercialization and products under development, 

since the model only allows capacity extensions for the 

under development products. This distinction is 

necessary in order to minimize undesirable changes in 



  
 

the already approved production process of the 

products in commercialization; 

 process design constraints, to ensure process stability 

over the planning horizon. 

The objective function (see Eq. (1)) is the 

maximization of the NPV resulting from the income of 

product sales (INCO) minus operational costs (OC), 

storage costs (SC), disposal costs associated with the 

unused final products under development (WC), 

changeover costs (COC), scale-up costs (LC), and 

investment costs (IC). 

 

ICLCCOCWCSCOCINCONPV max  (1) 

Computational Results and Discussion 

Illustrative Example 

A planning horizon of 5 years discretized in 10 

periods of equal duration (6 months), and a set of 5 

products (3 under development, and 2 already in 

commercialization) are considered in this example. The 

product demand forecast profiles are known for each 

product (see Figure 2). 

 

Figure 2. Demand forecast profile for products 
under development (PA, PB, and PC) and for 
products in commercialization (PD and PE) 

All the products considered follow a similar 

production recipe, as presented in Figure 3. This recipe 

comprises three aggregated tasks (reaction, filtration, and 

drying), and for each task, three types of processing units 

are already available in the plant, according to the 

characteristics presented in Table 1.  

Capacity extensions are modeled considering the 

acquisition of additional processing units among each one 

of the equipment types defined in Table 1. 

 

Figure 3. Recipe followed by the products 

Uncertainty is modeled considering normal 

distributions for the product demand, with a standard 

deviation of 30% for products under development, and 

10% for products in commercialization (values derived 

from the forecasts in Figure 2). For the processing times, 

uniform distributions are considered. A symmetric 

deviation of  33% around the average was assumed for 

this random variable, for both types of products. For the 

clinical trials outcomes, Bernoulli distributions are used 

considering the given probabilities of success, for each 

product and clinical trial phase. 

Table 1. Main characteristics of the processing 
units 

 Unit 

code 

Max. cap. 

(kg) 

Min cap. 

(kg) 

Inv. cost 

(rmu) 

Reactors 

 

R1 500 5 20,000.00 

R2 1500 15 35,000.00 

R3 4500 45 70,000.00 

Filters 

 

F1 500 5 18,000.00 

F2 1000 10 35,000.00 

F3 3000 30 50,500.00 

Dryers 

 

D1 300 3 18,000.00 

D2 800 8 35,000.00 

D3 2000 20 50,500.00 

Results 

The MILP model and the MCS component were 

implemented using IBM ILOG CPLEX Optimization 

studio, version 12.6.0, and the results were obtained 

running the MCS framework (Figure 1) for 1000 iterations. 

The results (objective function and decisions variables) are 

presented as histograms and probabilistic distributions.   

 

 

Figure 4. NPV histogram and probability 
distribution 

Figure 4 shows the values obtained for the NPV, with 

the maximum value for the NPV observed under 

uncertainty being 1.78 x 10
7
 relative monetary units (rmu), 

with a minimum value of 1.27 x 10
7
 rmu, and an average 

of 1.49 x 10
7
 rmu. These values are very similar (slightly 

lower) to those obtained without considering uncertainty in 



  

processing times. Not only the NPV values, but also the 

slightly skewed right pattern of the histograms are identical 

(the differences are less than 1%). 

This result is natural, since the major impact of 

uncertainty comes from the clinical trials “pass”/“fail” 

variability, leading to a further development of the product 

until its commercialization or to its abandonment, with the 

loss of all the investments made so far. Therefore, the 

effect of the additional uncertainty in processing times is 

almost unnoticed in the NPV values.  

Nevertheless, regarding the process design, scale-up, 

and capacity extensions decisions, some relevant 

differences arise when considering the uncertainty in the 

processing times. Concerning the process design and scale-

up results, the main difference occurs in the last periods of 

the planning horizon, with the selection of processing units 

with higher capacities in almost all the products 

considered. These results are particularly evident for the 

PC product (under development). We therefore briefly 

describe this case here. 

Figure 5 and Figure 6 present the most frequently 

selected set of processing units associated with lot-sizes 

(with and without additional uncertainty in processing 

times). In order to make the results more reliable a 

“robustness” measure was defined - the percentage of 

occurrences of each process design in more than two 

periods in the same iteration. 

 
(a) 

 
(b) 

Figure 5. Results for product PC (under development), 
with uncertainty in processing times: (a) process design 

selection;(b) solution robustness 

From the analysis of these two figures, we can state 

that, when considering uncertainty in processing times 

(Figure 5), scale-ups tend to occur earlier and associated 

with processing units of higher capacity. In this case, for 

example, a scale-up occurs from phase I to phase II, and 

for the clinical trial phase II the most frequent, and robust 

process design configuration is for lot-size 4 (3200 kg) and 

processing units R3_F3_D3. 

 
(a) 

 
(b) 

Figure 6. Results for product PC  (under 
development), without uncertainty in processing 
times: (a) process design selection; (b) solution 

robustness 

When not considering uncertainty in processing times, 

the combined analysis of frequency and robustness leads to 

the selection of lot-size 1 (400 kg) and processing units 

R1_F1_D1. In this case, the scale-up will only occur from 

phase II to phase III. These results do therefore provide 

interesting information on the risks of the decision-making 

process if not all relevant uncertain parameters are taken 

into account. 

Finally, concerning the capacity extension, there are 

also some differences. Although the overall observed 

capacity extensions for both cases are not significant (see 

Figure 7), when introducing uncertainty in processing 

times this has a significant increase of about 56% on 

average. The results obtained for the two situations are 

compared in Figure 7 (these are average values for the 

1000 iterations). 

 



  
 

 

Figure 7. Capacity extension for reactor R1, 
with and without uncertainty in processing time 

Conclusion 

This paper focus on the effects of simultaneously 

considering several sources of uncertainty in the product 

launch planning problem. A previously developed 

approach (Marques et al., 2016), that integrates a MILP 

model with a two-step Monte Carlo Simulation framework, 

has been improved in order to capture uncertainty in 

product demand, in the outcomes of clinical trials, and in 

processing times. The results obtained with this new 

approach provide valuable information to support the 

medium and the long-term decisions associated with the 

problem, by efficiently assessing the joint impact of 

several sources of uncertainty. It is clear from the results 

that uncertainty in processing times is not negligible, even 

in situations where other types of uncertainty are present. 

Although, the impact of the processing time variability in 

the NPV is not significant, the results show that it will 

inevitably affect the decision-making process, by changing 

the best strategies in what concerns process design 

configuration, and times and sizes of scale-ups.  

Future research will include a better systematization of 

the whole decision-making process, in order to go beyond 

a purely economic dimension, and to also integrate key 

sustainability aspects. Also, the scalability of the model to 

solve more complex and large instances should be 

addressed in further research.   
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