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Dept. of Chemical Engineering, Norwegian University of Science and Technology, NTNU, Trondheim, Norway

Abstract

In this paper we apply health-aware control ideas to the optimal operation of a subsea gas compression

plant. Subsea systems operate in harsh environments and under uncertain and varying operation condi-

tions. Because they are very difficult and expensive to access, an optimal operational strategy that tries

to maximize hydrocarbon production must ensure that no unplanned shutdowns due to premature equip-

ment failures occur. In this paper we apply two approaches for optimization under uncertainty in order to

maximize the economic profit, while ensuring that the subsea compression plant remains operational until

the next planned maintenance. We consider a min-max robust optimization and a scenario-based opti-

mization with recourse. Although both methods avoid unplanned shutdowns, the scenario-based method

results in a less conservative solution at the cost of a larger problem size.
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Introduction

Most oil and gas fields that are easy to develop have

been exhausted, forcing the petroleum industry to pro-

duce from more difficult fields with larger water depths,

longer tie-back distances and harsh climate conditions.

Subsea processing technology is an enabling technology

for development of such fields, although several new

challenges arise when production and processing facil-

ities are put on the seabed (Ramberg et al., 2013). One

of the challenges is that the process is not easily acces-

sible for maintenance. Since maintenance interventions

require specialized lifting vessels, fair weather conditions

and available spare modules, unanticipated breakdowns

can lead to long production halts and large production

losses. The lifting vessels sometimes cost several tens

to hundreds of millions of dollars to rent, and must

be booked several months in advance. For this reason,

stringent requirements on safety and reliability are im-

posed on operation of these processes. This in turn of-

ten leads to conservative design and operation strategies
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and the economic potential of the field is often not fully

realized.

In this paper, we propose to combine reliability

and operational considerations in an model predictive

control-like framework with shrinking horizon. In par-

ticular, we present an approach that ensures that the

remaining useful life (RUL) of the equipment is not

exhausted before the next planned maintenance stop,

while at the same time maximizing the expected opera-

tional profit.

A few other authors investigated the combination of

the prognostics and health monitoring (PHM) with ad-

vanced control methods such as model predictive control

(MPC). MPC is a control strategy based on repeated

optimization of a process model to obtain optimal input

trajectories. Due to its ability to deal with multi-variate,

constrained problems, MPC has gained popularity in in-

dustry in recent years (Morari and Lee, 1999). Health

prognostics information is usually not taken explicitly

into consideration when calculating the optimal con-

trol moves, and this can lead to sub-optimal operation

(Salazar et al., 2016). If a prognostic model is available,



the system health state can be included as constraints

in the optimization (Pereira et al., 2010; Salazar et al.,

2016), or as terms in the objective function (Escobet

et al., 2012). The term health-aware control was in-

troduced by Escobet et al. (2012) to describe a control

structure that pro-actively adjusts the inputs to pre-

vent a fault from occurring. The health-aware control

structure thereby distinguishes itself from the more es-

tablished fault-tolerant control (FTC) structure, which

only takes corrective action once a fault has already oc-

curred. Similar ideas are discussed in papers by Pereira

et al. (2010), who include PHM in an MPC framework to

redistribute the control efforts among redundant actua-

tors to prevent actuator breakdown, and Salazar et al.

(2016), who model the reliability of pumps in a drinking

water network using Bayesian networks and include the

system reliability in the MPC formulation.

In this work we present a comparative study of two

robust approaches applied to a subsea gas compression

system. We model a subsea gas compression station and

define the optimal control objective. The reliability of

the system is ensured by constraining the health-state

of the compressor, which is assumed to be the critical

component. The degradation of the compressor health

is assumed to be a function of the input usage and un-

certain parameters. In particular, we assume parametric

uncertainty in the compressor health degradation model

and calculate the robust solution using both a scenario-

based MPC approach, and a worst-case MPC approach.

Combining Prognostics and Control

To start with, we assume that the health state, h,

of the system is observable, and we define a minimum

health limit, hmin, above which we have to operate.

Violation of this constraint corresponds to an unac-

ceptable risk of failure. We assume the health to be

monotonously decreasing, i.e. the system is not repaired

or maintained before the final time tf is reached. Be-

cause of the fixed final time, the MPC has a shrinking

horizon rather than the more common receding horizon.

Due to the inherent uncertainty in the model, the op-

timization problem solved at each time step in the MPC

is usually stochastic, because most prognostic models

are statistics-based. The stochastic optimization prob-

lem can be written as

min
u

E(f0(u,p)) s.t.


gi(u,p) = 0 i=1,...,ng

fj(u,p) ≥ 0 j=1,...,nf

hk(u,p) ≥ 0 k=1,...,nh

(1)

where p ∈ P. In the above expression, we use u to

denote the inputs and p to denote the uncertain param-

eters, which are contained in the (bounded) set P. f0 is

the objective function, g are the equality constraints, f

are the inequality constraints and h are the constraints

on the equipment RUL. The operator E is used to signify

the expected value of the objective function. Below, we

discuss two approaches for addressing the uncertainty.

Min-Max Model Predictive Control

One way to handle the uncertainty is the ”min-max”-

approach, in which the objective function is optimized

given a worst-case realization of the uncertain param-

eters. The min-max-approach, sometimes also referred

to as the ”robust” approach, was implemented in a re-

ceding horizon MPC framework in Zheng and Morari

(1993).

In the non-linear case, identifying the worst-case re-

alization can usually not be done explicitly. Rather,

the worst-case realization is found through maximiza-

tion of the inequality constraints, subject to bounds on

the norm of the random parameters. Consequently, a

bi-level optimization problem has to be solved at each

stage of the min-max MPC.

min
u

E(f0(u,p)) s.t.
{
φi(u) ≥ 0 i=1,...,nf+nh

(2a)

where

φi(u) = max
p

f̂i(u,p) s.t.

gj(u,p) = 0 j=1,...,ng

p ∈ P

(2b)

and f̂ =
[
f1, . . . , fnf

, h1, . . . , hnh

]ᵀ
. Bi-level problems

are difficult to solve, as they quickly become numeri-

cally intractable. Diehl et al. (2006) propose an ap-

proximated robust counterpart of the nonlinear opti-

mization problem, which is numerically efficient. The

min-max-approach is often very conservative (Scokaert

and Mayne, 1998), because the possibility of future in-

formation about the realizations, i.e. feedback, and the

possibility of other realizations than the worst-case, are

ignored when solving the problem.
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Figure 1. Illustration of a scenario tree with robust hori-

zon of length nrobust = 2 and prediction horizon of length

n. At each stage there are three possible realizations of

the uncertain parameter, p+, p0 and p−.

Scenario-based Model Predictive Control

As a remedy, Scokaert and Mayne (1998) propose

a multi-stage approach with recourse. Scenario-based

MPC has its roots in multi-stage stochastic program-

ming. The core idea in scenario-based optimization is

to assume a discrete probability distribution for the un-

certain parameters. A finite number of scenarios are

then generated to represent how the uncertainty may

develop over time. For the resulting scenario tree, the

expected objective function value is then minimized sub-

ject to non-anticipativity constraints, which require that

the decisions only depend on the past realizations of

the random parameters and their probability distribu-

tion. Future realizations can not be anticipated, and

are therefore not included in the decision making pro-

cess (Dupačová et al., 2000).

Due to the need for additional variables and con-

straints, the complexity of scenario-based MPC in-

creases with the number of scenarios. In order to keep

the problem tractable, the scenario tree only branches

up until a certain stage, called the robust horizon (Lucia

et al., 2013). After the robust horizon, the realizations

of the uncertain parameters are kept constant.

An illustration of a scenario tree with a robust hori-

zon with length nrobust = 2 and a prediction horizon

with length n is shown in Fig. 1.

A challenging task is the selection of a representative

scenario tree. Especially when the dimensionality of the

problem becomes large, it is nontrivial to reduce the sce-

nario tree to a manageable size. One way to generate

the scenario tree by using combinations of the maxi-

mum, minimum and nominal uncertain parameters. A

scenario tree generated this way will result in a feasi-

ble solution for linear systems, and typically works for

non-linear systems in which the degree of non-linearity

is not too large (Lucia et al., 2013).

Oil+gas

Topside

Pump

Compressor

Separator

Choke
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Figure 2. Process diagram of the subsea gas compression

station.

Case study

Process description

A subsea gas compression station (Fig. 2) is used

to illustrate the robust health-aware control strategy in

this paper. The process is similar to the gas compression

stations installed on the Åsgard field and the Ormen

Lange pilot.

The plant consists of a single choke, which regulates

the flow of oil and gas from the reservoir, a scrubber

which separates the gas from the oil, and a wet-gas com-

pressor to achieve sufficient gas pressure for transport

through the pipeline. Due to non-perfect separation,

some liquid droplets are carried over in the gas stream.

The separation efficiency of the scrubber is assumed to

be a function of the gas velocity and the fluid density

(Austrheim, 2006). The compressor in our system is

a wet gas compressor which can handle moderate liq-

uid carry-over, with a suction gas-volume-fraction from

0.95 to 1. A full description of the compressor model,

including the compressor maps, can be found in Aguil-

era (2013). The liquid stream from the separator is

boosted before being recombined with the compressed

gas stream. Finally, the multiphase flow is sent to the

receiving facility through a long subsea pipeline.

We assume that the wet-gas compressor is the critical

component in terms of overall system reliability. We

therefore make the simplifying assumption that the wet-

gas compressor is the only component whose reliability

will decrease on the given time horizon. As rotating

equipment is prone to wear damage, leakage and signal

failure, due to its complexity and many moving parts

(Liu, 2015), this assumption seems reasonable. Tests

from the Ormen Lange pilot have shown that the RUL

of the compressor is strongly linked to the operating

conditions (Eriksson et al., 2014), which makes it a good

choice for showcasing a health-aware operating strategy.



Modeling the compressor degradation

In general it is hard to predict exactly when or how

a compressor is going to fail. Liu (2015) lists some com-

mon causes for compressor failure, including how they

can be monitored. Both Eriksson et al. (2014) and Liu

(2015) report that the magnetic bearings of the compres-

sor are critical components and prone to fatigue failure.

Eriksson et al. (2014) also found that the health state of

the active magnetic bearings is observable through their

power consumption. The reason for this is that dam-

age to the compressor innards causes an imbalance of

the driving shaft. Consequently the magnetic bearings

require more power to stabilize this imbalance.

We propose to model the health degradation of the

compressor over one month of operation, ∆h, as a result

of wear, which is proportional to the dimensionless com-

pressor speed N , and shock damage, which is caused by

set-point changes in the compressor speed, |∆N |.

∆h = −
(

pNN
n︸ ︷︷ ︸

Wear and tear

+ p∆|∆N |n∆︸ ︷︷ ︸
Shock damage

)
· f(y) (3)

Here, h is the compressor health, which ranges from 1

to 0 (breakdown). p = [pNp∆] denotes the random pa-

rameters that affect the degradation. We assume that p

follows a Gaussian distribution. The function f , which is

a function of the measurements y, is introduced to take

into account the increased rate of wear in multiphase flu-

ids. Eriksson et al. (2014) report that the compressor life

scales cubically with the compressor speed. We there-

fore chose the coefficients n = n∆ = 3. Furthermore

we assume that the compressor degrades exponentially

with the liquid content in the gas.

∆h = −
(
pNN

3 + p∆|∆N |3
)
· exp(1− GVF) (4)

where GVF is the gas volume fraction at the inlet of the

compressor.

Since pN , N , p∆ and |∆N |are nonnegative, the com-

pressor health is monotonously decreasing, and failure is

defined as the event when h goes below a failure thresh-

old value hmin. We assume that h is measurable.

Defining Optimal Control Problems

The objective of the plant operation is to maximize

the profit of the plant between planned maintenance

stops. As a simplification, we assume that the varia-

tion in the variable operational expenses (in particular

the power usage of the compressor) are negligible com-

Table 1. Bounds for the variables

Variable Lower Upper

Discharge pressure 15 bar -

Compressor health 0.8 1.0

Compressor surge 0 -

Compressor choke 0 -

Compressor speed 0.6 1.05

Choke opening 0.0 1.0

pared to the income due to gas production. Further-

more, we assume that gas is the only valuable product,

and the contribution of oil can be neglected in the objec-

tive function. Taken into account that gas that is pro-

duced today, is worth more than gas that is produced

in the future, we use the net present value (NPV) of the

gas in the objective function.

The discharge pressure from the compressor is

bounded from below to make sure that the carbohy-

drate stream has enough pressure to overcome the flow

resistance in the transport pipeline. Moreover, we add

constraints to prevent compressor surge and compressor

choke/Stonewall conditions. Both these phenomena are

undesired, so this operating region must be avoided. All

bounds are listed in Tab. 1.

Deterministic formulation

We formulate the objective function for the optimal

control problem as

f0(ṁgas, tf ) = −
∫ tf

0

NPV(ṁgas)dt, (5)

where tf is the time until the next planned maintenance

stop.

The optimization problem is solved using Casadi

3.0.0 (Andersson, 2013) in MATLAB R2015a. The prob-

lem is discretized using a third order direct colloca-

tion scheme and solved with Ipopt 3.12.3 (Wächter and

Biegler, 2006).

Stochastic multi-stage approach

Robustness towards parametric uncertainty in the

parameters pN and p∆N in the compressor degradation

model from Eq. (3) is achieved by discretizing their prob-

ability density function and applying the scenario-based

method. Five different scenarios are considered: HH,

HL, LH, LL and mean. These are the combinations

of the maximum, minimum and nominal realizations.



Table 2. Values of the uncertain variables pN and p∆N

in the scenarios used to generate the scenario tree.

Scenario pN p∆N

LL 0.006 (µ− 2σ) 0.6 (µ− 2σ)

LH 0.006 (µ− 2σ) 1.8 (µ + 2σ)

HL 0.018 (µ + 2σ) 0.6 (µ− 2σ)

HH 0.018 (µ + 2σ) 1.8 (µ + 2σ)

mean 0.012 (µ) 1.2 (µ)

See Tab. 2 for the specific values. All five scenarios are

equally probable. An initial prediction horizon of length

n = 20 and a robust horizon of length nrobust = 1 is used

to speed up the calculation. Higher robust horizons were

tested as well, but were not found to improve the solu-

tion significantly while resulting in a much higher com-

putational cost.

Min-max approach

Robustness can also be achieved by considering a

worst-case scenario in the optimization. For a gen-

eral, non-linear case, the approximate robust counter-

part problem may be solved using the method described

in Diehl et al. (2006). For the current system, it is not

strictly necessary to define the robust counterpart, as it

can be determined a priori that the HH -scenario from

Tab. 2 will always be the worst-case scenario.

Results

Deterministic open-loop solution

The deterministic open-loop solution can be seen in

Fig. 3. It can be seen that the constraints are satisfied,

and that the compressor health constraint is active at

the end of the horizon. Since the NPV of the gas pro-

duction is considered, early production is favored over

late production.

Closed-loop results

The closed-loop responses of three control structures

are shown in Figure 4. Firstly, notice that the non-

robust approach, in which expected values are consid-

ered for the uncertain parameters, leads to repeated vi-

olations of the constraints on the discharge pressure and

the final health constraint. In contrast, the two robust

approaches both satisfy all constraints, as is to be ex-

pected. In both cases, there is a back-off from the con-
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Figure 3. Deterministic open-loop solution when pN =

0.015 and p∆ = 1.5.

Table 3. Normalized profit, i.e. net present gas pro-

duction, for the three methods (in closed-loop).

Method Discounted closed-loop profit

Scenario-based 1.026

Worst-case 1.000

Nominal case 1.056∗

* Constraint violation

straints to account for uncertainty. It can be seen that

the scenario-based approach is less conservative than the

worst-case approach, since it results in overall higher gas

production, ṁgas.

The values of the cost function for the three different

cases are shown in Tab. 3. Note that the scenario-

based method yields a higher net present gas production

than the worst-case method, but lower than the non-

robust method based on expected values. The higher

gas production for the non-robust case comes at the cost

of constraint violation (i.e. an unplanned maintenance

stop). The 2.6% higher net present gas production of

the scenario-based method, compared to the worst-case

approach, may be a substantial increase in profit.

Conclusion

We have developed a model for a subsea gas com-

pression system and shown how prognostics can be in-

cluded in the decision-making process to obtain a con-
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Figure 4. Comparison of closed-loop performance of

three different controllers in the presence of uncertainty.

The realizations of the uncertain variables are pN =

0.015 and p∆ = 1.5.

trol structure that gives economical and safe operation.

Robustness towards parametric uncertainty is very im-

portant in this application, since the health-constraint

always will be active. To achieve robustness, we employ

a scenario-based optimization method, which is shown

to be less conservative than a worst-case approach.

Future work will focus on measurement feedback and

health state estimation, more detailed degradation mod-

els and extension to system-wide health-aware opera-

tion.

Acknowledgments

This work is funded by the SUBPRO center for re-

search based innovation, www.ntnu.edu/subpro.

References

Aguilera, L. C. P. (2013). Subsea Wet Gas Compressor Dy-

namics. Master’s thesis, Norwegian University of Science

and Technology.

Andersson, J. (2013). A General-Purpose Software Frame-

work for Dynamic Optimization. PhD thesis, Arenberg

Doctoral School, KU Leuven.

Austrheim, T. (2006). Experimental Characterization of

High-pressure Natural Gas Scrubbers. PhD thesis, Uni-

versity of Bergen.

Diehl, M., Bock, H. G., and Kostina, E. (2006). An ap-

proximation technique for robust nonlinear optimization.

Mathematical Programming, 107(1-2):213–230.
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