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Abstract

The problem of nonlinear optimization for process design under uncertainty is addressed in this paper. A

novel robust optimization framework is proposed to address general nonlinear problems under uncertainty.

To address the limitation of single point linearization with respect to uncertain parameters for a large

uncertainty region, an iterative algorithm is developed. The new method applies local linearization

around multiple realizations of the uncertainty, and iteratively solves a robust optimization problem. The

proposed method can handle uncertainty in both inequality constraints and equality constraints.
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Introduction

Many process design problems can be formulated as non-

linear optimization problems. It is common that un-

certain parameters exist in those models since they are

often estimated through noisy data. The uncertainty

should be considered in optimization, otherwise sub-

optimal or infeasible solutions may occur.

Robust optimization has become an active research

area for handling uncertainty in optimization problems,

especially for linear optimization problems (Ben-Tal and

Nemirovski, 1999; Bertsimas and Sim, 2004; Li et al.,

2011), second-order cone programming (El Ghaoui and

Lebret, 1997; Ben-Tal et al., 2002), and semi-definite

programming problems (Ben-Tal et al., 1998; El Ghaoui

et al., 1998). On the other hand, general nonlinear

robust optimization has received less attention in the

past. An approximate robust formulation that employs

linearization of the model equations at a point corre-

sponding to the nominal parameter values and the cho-

sen values for control variables, the worst-case can be

computed through a numerically tractable approxima-

tion of the robust counterpart (Diehl et al., 2006). A

robust optimization method has been studied based on
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linearization around nominal values of the uncertain pa-

rameters (Zhang, 2007). However, the above methods

can only deal with the optimization problem under un-

certainty with a small perturbation.

In this paper, a novel nonlinear robust optimization

framework is proposed. The objective is to address gen-

eral nonlinear optimization problems under relatively

large uncertainty region. The proposed method is based

on linearization with respect to uncertain parameters

around multiple realizations and an iterative algorithm.

The problems to be addressed can be classified as two

categories. In the first case, only inequality constraints

are involved with uncertainty. In the second case, both

design variables and state variables appear in the non-

linear optimization problem, and they are coupled by

the state equations.

The rest of the paper is organized as follows: In

the second section, the problem addressed in this paper

is formally presented. In the third section, the robust

counterpart formulation is derived for both inequality-

only case and the general case with equality constraints.

In the fourth section, an iterative algorithm is presented,

which is based on linearization around multiple realiza-

tions of uncertainty. Finally, the proposed method is

demonstrated through a process design example.



Problem Statement

In this work, the following general nonlinear opti-

mization problem for process design is considered:

min
y,u∈U

φ(y, u)

s.t. F (y, u, s) = 0

G(y, u, s) ≤ 0

(1)

where s ∈ RNs represents uncertain parameters, and

y ∈ RNy represents state variables, u ∈ RNu represents

design variables which are constrained in a feasible set

U , F (y, u, s) = 0 is known as the state equation. Ns, Ny,

and Nu represent the number of the uncertain parame-

ters, state variables, and design variables, respectively.

The size of the state variables y and the number of

the state equations F should be equal so that the state

variables can be uniquely determined by the design vari-

ables and uncertain parameters through the state equa-

tions. Based on the Implicit Function Theorem, the

state equation F (y, u, s) = 0 implicitly defines a func-

tion y = y(u, s). Throughout the paper, it is assumed

that the function F and G are continuously differen-

tiable.

If the state variables y can be eliminated through the

state equation, an inequality-only constrained nonlinear

optimization can be formulated as follows:

min
u∈U

φ(u)

s.t. G(u, s) ≤ 0
(2)

where G = (g1, ..., gm)T ∈ Rm, and m is the number of

inequality constraints.

Robust Optimization Formulation

In this section, the robust optimization formulation

for nonlinear optimization problems is developed. For

simplicity, the model (2) with only inequality constraints

is considered first and then the results are extended to

the general case with both equality and inequality con-

straints as shown in (1). The most important issue in

robust optimization is to define an uncertainty set for

the uncertain parameters. There are various types of

uncertainty set which leads to different robust counter-

part formulations (Li et al., 2011). The widely used

uncertainty set is defined by lp-norm. This type of un-

certainty set can be easily applied for unbounded uncer-

tainty distribution. For bounded uncertainty, it is too

conservative to construct an uncertainty set exceeding

the bounded uncertain region. It is more meaningful

to define an uncertainty set which is a subset of the

bounded uncertainty region. While the uncertainty re-

gion is determined only by the bounds (i.e., interval) of

each parameter, the corresponding robust optimization

formulations for linear optimization problem were de-

rived in Li et al. (2011) for independent uncertainty and

in Yuan et al. (2016) for correlated uncertainty. In this

work, a more general type of uncertainty set is consid-

ered, which is defined as the intersection of two norm-

induced uncertainty sets:

S =
{
s|‖M1(s− s1)‖p1 ≤ ∆1, ‖M2(s− s2)‖p2 ≤ ∆2

}
(3)

where M1 and M2 are invertible matrices representing

information such as perturbation and correlation of the

uncertain parameters, s1 and s2 are the center points of

the two sets, p1 and p2 are norm parameters used in the

two sets, and ∆1 and ∆2 are the set sizes.

Inequality-Only Case

The main idea of robust optimization is to enforce

that constraints are satisfied for all the realizations of

the uncertainty within the pre-defined uncertainty set

S, which can be shown as:

G(u, s) ≤ 0,∀s ∈ S (4)

which is equivalent to

max
s∈S

gi(u, s) ≤ 0, i = 1, ...,m (5)

Before applying the robust optimization formulation,

the nonlinear function gi is linearized. Taking the first-

order Taylor approximation in a small region around

point s∗, we can obtain

gi(u, s) ≈ gi(u, s∗) + (s− s∗)T∇sgi(u, s∗)
= gi(u, s∗)− s∗T∇sgi(u, s∗) + sT∇sgi(u, s∗) ≤ 0

(6)

where ∇sgi denotes the gradient of gi with respect to s.

The robust constraint (5) can be approximated as

max
s∈S

gi(u, s)

≈ gi(u, s∗)− s∗T∇sgi(u, s∗) + max
s∈S

sT∇sgi(u, s∗) ≤ 0

(7)

Apply the uncertainty set in Eq. (3), the inner max-

imization problem in (7) can be formulated as

max
s

{
sT∇sgi(u, s∗) :

‖M1(s− s1)‖p1 ≤ ∆1, ‖M2(s− s2)‖p2 ≤ ∆2

}



(8)

The inner maximization problem is a conic program-

ming problem, and by applying conic duality, the prob-

lem can be formulated as

min
w1,w2


−s1TMT

1 w1 + ∆1‖w1‖q1
−s2TMT

2 w2 + ∆2‖w2‖q2 :

MT
1 w1 +MT

2 w2 = −∇sgi(u, s∗)

 (9)

where w1 and w2 are dual variables, and q1 and q2 are

dual norm parameters, which satisfy 1/p1 + 1/q1 = 1,

1/p2 + 1/q2 = 1.

After some substitutions and variable replacements,

the robust counterpart of the original inequality con-

straint is shown as follows

gi(u, s∗)− s∗T∇sgi(u, s∗)
+s1

T∇sgi(u, s∗) + (s2
T − s1T )z

+∆1

∥∥M−T1 (z −∇sgi(u, s1))
∥∥
q1

+ ∆2

∥∥M−T2 z
∥∥
q2
≤ 0

(10)

where z is an auxiliary variable.

General Case

In the general case, state variables and equality con-

straints are involved in the nonlinear optimization. The

state variables can be determined as a function of de-

sign variables and the uncertain parameter under the

Implicit Function Theorem. First, we define Fy(y, u, s)

as the partial Jacobian of F (y, u, s) with respect to y,

i.e.,

[Fy(y, u, s)]ij =
∂Fi(y, u, s)

∂yj

Fs, Gy, Gs, ys are defined similarly. The state vari-

able y can be implicitly defined as a function y(u, s)

through the state equation F (y, u, s) = 0. Apply the

implicit function y(u, s) in the inequality constraint, we

have

G(u, s) = G(y(u, s), u, s) (11)

Differentiating both sides of the equation

F (y(u, s), u, s) = 0 with respect to s leads to the

matrix equation

Fy(y, u, s)ys + Fs(y, u, s) = 0 (12)

Notice that y(u, s) is an implicit function. It is not

necessary to get an explicit expression of ys, instead, it is

treated as variables in the formulation. Differentiating

G(u, s) with respect to s, we have

Gs(u, s) = Gy(y, u, s)ys +Gs(y, u, s) (13)

For each individual inequality constraint i, the

derivative is obtained as

∇sgi(u, s∗)T = eTi Gs(u, s) = eTi [Gy(y, u, s)ys+Gs(y, u, s)]

(14)

where ei is the ith column of the identity matrix, and

Gy, Gs takes value at s∗. Substitute Eq.(14) into the

formulation shown in Eq.(10) and combining with the

constraint shown in Eq.(12), the robust optimization for

the general case is obtained

min
y,u∈U

φ(y, u)

s.t. F (y, u, s∗) = 0

Fyys + Fs = 0

gi(y, u, s∗) + (s1
T − s∗T )(Gyys +Gs)

T ei + (s2
T − s1T )z

+∆1

∥∥M−T1 (z − (Gyys +Gs)
T ei)

∥∥
q1

+ ∆2

∥∥M−T2 z
∥∥
q2
≤ 0

i = 1, ...,m

(15)

Iterative Algorithm

Since the first-order Taylor linearization around a

single point is effective only in a small range, the ro-

bust optimization formulation derived in the third sec-

tion works well only under small uncertainty region. If

the perturbation is large, the linearization will be ap-

plied around multiple realizations (with index k) of the

uncertain parameter. The robust optimization formula-

tion for the general case is summarized in Eq.(16)

min
ym,u∈U

φ(ym, u)

s.t. F (yk, u, sk∗) = 0,∀k
F ky y

k
s + F ks = 0,∀k

gi(y
k, u, sk∗) + ((sk1)T − (sk∗)

T )(Gkyy
k
s +Gks)T ei

+((sk2)T − (sk1)T )zk + ∆k
2

∥∥∥(M2)
−T
zk
∥∥∥
q2

+∆k
1

∥∥∥(Mk
1 )
−T

(zk − (Gkyy
k
s +Gks)T ei)

∥∥∥
q1
≤ 0,

i = 1, ...,m, ∀k
yk ≤ ym,∀k

(16)

All the constraints and corresponding variables in

Eq.(15) are extended with respect to the multiple points

around which the ”piecewise” linearization is taken. The

design variables u remains the same for all the points.



As shown in Eq.(16), if the state variable exists in the

objective function, it is replaced by the maximum ym of

it among all the multiple points.

Another issue is how to select the points around

which the ”piecewise” linearization is taken. In

this paper, the points are randomly selected within

the uncertainty region, then feasibility is tested

and an iterative algorithm is used to solve the

problem. The algorithm is shown in Figure 1.

Figure 1. The iterative algorithm for solving the problem

Optimal Design of a Reactor-Separator System

In this section, a reactor design problem is studied

to test the effectiveness of the proposed methodology.

The optimal process design problem contains both in-

equality and equality constraints associated with uncer-

tain parameters. The robust optimization formulations

in the iterative algorithm are solved in GAMS. In the

feasibility test step, the values of state variables are ob-

tained by solving the state equations with fixed design

variables and uncertain parameter values in MATLAB.

Figure 2. Reactor-separator process

A reactor design problem studied by Rooney and

Biegler (2001) and Hale and Zhang (2007) is shown in

Figure 2.

The purpose of the system is to convert reactant A to

product C via the above reaction system which consists

of four first-order elementary reactions. The uncertain

parameters are the reaction rates ki, i = 1, ..., 4 with

units of time−1, i.e., s = (k1, k2, k3, k4)T . The volume

V of the reactor (m3), the fraction δ of species A and

B that is recycled back to the reactor, the fraction β of

species D and E that are recycled back to the reactor

are classified as design variables, i.e., u = (V, δ, β)T .

The flow rate F out of the reactor (mol/time), the

mole fraction of each species xa, xb, xc, xd, xe at

the reactor outlet is regarded as state variables, i.e.,

y = (F, xa, xb, xc, xd, xe)
T . To minimize the total cost,

the following optimization problem is formulated:

min 10V 2 + 5F

s.t.

Fa0 − xaF (1− δ)− ca0V (k1 + k3)xa = 0

− xbF (1− δ) + ca0V (k1xa − (k2 + k4)xb) = 0

− xcF + ca0V k2xb = 0

− xdF (1− β) + ca0V k3xa = 0

− xeF (1− β) + ca0V k4xb = 0

xa + xb + xc + xd + xe = 1

xcF ≥ 40

0 ≤ δ ≤ 1, 0 ≤ β ≤ 1

(17)

The known parameters are the inlet flow rate Fa0 =

100mol/time and the concentration of species A at the

inlet (the molar concentration throughout the entire sys-

tem as well) ca0 = 10mol/m3. The detailed information

about the uncertain parameters can be found in Rooney

and Biegler (2001). Two types of uncertainty region

which can be referred to as individual confidence region

and joint confidence region are considered in this exam-

ple. The uncertainty sets defined following Eq.(3) for

individual confidence region (which is a box set) can be

represented as Eq.(18):

Sj =
{
s|
∥∥s− sj∗∥∥∞ ≤ ∆, ‖s− ŝ‖∞ ≤ t1−(α/2),n−pσ

}
,∀j

(18)

where σ is the standard derivation of the uncertain pa-

rameter, t1−(α/2),n−p is the value of the Student-t distri-

bution, α is the desired confidence level, p is the number



of uncertain parameters, and n is the number of data

points used in the estimation problem. The uncertainty

set for joint confidence region is defined as

Sj =

{
s
∣∣∣∥∥∥s− sj∗∥∥∥

∞
≤ ∆,∥∥Σ−1/2(s− ŝ)
∥∥
2
≤ (pF1−α,n−p)

1/2

}
,∀j (19)

where Σ is the covariance matrix of the uncertain param-

eters, and F1−α,n−p is the value of the F -distribution.

Notice that the joint confidence region is an ellipsoid.

The solutions obtained by the ”single-point” lin-

earization are shown in Table 1 (Hale and Zhang, 2007).

Table 1. ”Single-point” linearization (Hale and Zhang,

2007)

Set type V (m3) δ β Cost

Box 20.71 0.992 0.000 6632

Ellip. 19.57 0.978 0.000 5983

In this example, we also test the results for different

set sizes ∆ (0.005, 0.01, 0.02, 0.05 for individual confi-

dence region and 0.005, 0.01, 0.02 for joint confidence

region), and for each set size, 100 Monte Carlo runs are

taken. The average value (Ave), the maximum value

(Max), and the minimum value (Min) of the objective

value (Obj) and the number of points (Num) used for

”piecewise” linearization among 100 Monte Carlo runs

for individual confidence region and joint confidence re-

gion are listed in Table 2 and Table 3, respectively.

Table 2. Results for reactor-separator example (individ-

ual confidence region)

Size Obj Num

∆ Ave Max Min Ave Max Min

0.005 6393.1 6645 6221 3.68 5 1

0.01 6388.3 6672 6171 2.64 4 1

0.02 6375.5 6681 6108 1.86 3 1

0.05 6403.1 6769 6133 1.8 3 1

Table 3. Results for reactor-separator example (joint

confidence region)

Size Obj Num

∆ Ave Max Min Ave Max Min

0.005 6195.1 6490 5865 2.04 3 1

0.01 6182.8 6674 5800 1.41 2 1

0.02 6290.2 6616 5922 1 1 1

By comparing the results in both Table 2 and Table

3, it can be seen that as the set size increases, the num-

ber of points needed for linearization decreases. How-

ever, for the objective values, the best results for the

individual confidence region and joint confidence region

are obtained at size 0.02 and size 0.01 by comparing the

average value. In addition, the results show that the size

∆ can be optimized to obtain better results.

Comparing the results obtained by the ”piecewise”

linearization and ”single-point” linearization, it can be

observed that for the individual confidence region case,

although the maximum objective value in Table 2 is

slightly larger than the objective value in Table 1, the

average value is much smaller than the results in the

literature.

The robustness of the solutions is tested using 100

samples. The simulation results are plotted in Figure 3

and Figure 4.

Figure 3. Results for individual confidence region

Figure 4. Results for joint confidence region

The number of samples violating the constraints for

the ”piecewise” linearization method are all zeros for

both individual confidence region and joint confidence

region cases. While for the ”single-point” linearization



method, the numbers of violation samples is 12 for joint

confidence region and 0 for individual confidence region.

Although in the joint confidence region case, the objec-

tive for the ”single-point” linearization is better than the

one for ”piecewise” linearization, and the robustness is

worse. For the constraints, if the corresponding curve

is closer to the threshold the results is less conservative.

In Figure 3, the lines for size 0.01, 0.02, and 0.05 co-

incide and they are slightly more conservative than the

results for size 0.005. In Figure 4, as the size increases,

the results become more conservative with respect to the

constraints. This observation may also be useful for the

selection of the set size.

Conclusion

In this paper, a novel nonlinear robust optimization

framework was proposed to solve the nonlinear process

design problems under uncertainty. The robust counter-

part formulation is derived based on a general type of

uncertainty set defined by the intersection of two uncer-

tainty sets. In order to deal with uncertainty with larger

perturbation, ”piecewise” linearization is taken around

multiple realizations of the uncertain parameter and an

iterative algorithm is applied to solve the problem. The

framework is applicable for the optimization problems

with only inequality constraints as well as the problems

with equality constraints associated with uncertain pa-

rameters. For problems where uncertain parameters ex-

ist in equality constraints as well, the traditional robust

optimization method cannot be directly applied. How-

ever, the state variables can be determined while the

design variables and the uncertain parameters are fixed.

Based on the Implicit Function Theorem, the state vari-

ables can be replaced by a function of uncertain parame-

ters and design variables. Then the robust optimization

formulation can be applied on the inequality constraint

after eliminating the state variables. An optimal process

design example is studied to demonstrate the effective-

ness of the proposed methodology. The results show

that the proposed method has a higher level of robust-

ness than the ”single-point” linearization method. In

addition, while the results have the similar robustness

level, the proposed method leads to less conservative ro-

bust solution.
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