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Abstract

The relationship between the (open-loop) optimization problem that is repeatedly solved online and the

quality of the (closed-loop) schedule that is implemented, is poorly understood, even in the deterministic

case. We investigate various attributes of the open-loop problem and the rescheduling algorithm that

affect the quality of closed-loop schedules, viz. rescheduling frequency, scheduling horizon length, and

optimality gap. We find that it is beneficial to reschedule periodically even when there are no “trigger”

events. Also, we show that solving the open-loop problem suboptimally does not necessarily lead to poor

closed-loop solution due to the presence of feedback. Finally, we explore objective function modifications

as well as addition of constraints to the open-loop problem as methods to improve closed-loop performance.
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Introduction

Chemical production scheduling is an important prob-

lem in the process industry (Harjunkoski et al., 2014).

Although much work has been done on building ac-

curate models and effective solution methods (Méndez

et al., 2006; Maravelias, 2012; Velez and Maravelias,

2014), the aspect of rescheduling has received limited

attention. Rescheduling has been emphasized in some

works (Li and Ierapetritou, 2008), but in most cases

scheduling is thought to be a static open-loop problem

wherein if rescheduling is carried out, the emphasis is

only on restoring feasibility or optimality to the unexe-

cuted part of the current schedule. In reality, however,

the actual implemented schedule (closed-loop schedule)

results from successive solutions to multiple open-loop

problems. In this work, we first show through moti-

vating examples, how the relationship between open-

loop and closed-loop scheduling is poorly understood,

even in the deterministic case, when no uncertainty is

present. Thereafter, we investigate how the design of

the online scheduling problem, viz. the rescheduling fre-

quency, scheduling horizon length, and optimality gap,

affects the quality of the resulting implemented closed-

loop schedule. In addition, we explore the effect of ob-

jective function modifications and constraint addition

on closed-loop performance.
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Model

The state-space model proposed by Subramanian

et al. (2012) is used for all numerical studies in this

paper (Eqs. 1–8).

W̄n
ij(t+1) = W̄n−1

ijt ∀j, i ∈ Ij , t, n ∈ {1, 2, ....τi} (1)

B̄nij(t+1) = B̄n−1
ijt ∀j, i ∈ Ij , t, n ∈ {1, 2, ....τi} (2)∑

i∈Ij

W̄ 0
ijt +

∑
i∈Ij

τi−1∑
n=1

W̄n
ijt ≤ 1 ∀ j, t (3)

βMIN
ij W̄ 0

ijt ≤ B̄0
ijt ≤ βMAX

ij W̄ 0
ijt ∀ i, j, t (4)

Sk(t+1) −BOk(t+1) = Skt −BOkt +
∑
j

∑
i∈Ij∩I+k

ρikB̄
τi
ijt

+
∑
j

∑
i∈Ij∩I−k

ρikB̄
0
ijt − ξkt − Vkt ∀ k, t (5)

W̄n
ijt ∈ {0, 1}; B̄nijt, Vkt, Skt, BOkt ≥ 0 (6)

zcost = min
∑
k

∑
t

πINVk Skt +
∑
k

∑
t

πBOk BOkt (7)

zprofit = max
∑
k

∑
t

πkVkt (8)

One of the objectives: cost minimization or profit max-

imization can be employed. Backlogs (BOkt) are fixed

to zero for profit maximization, while excess sales (Vkt)

are fixed to zero for cost minimization. The task start

variable (W̄ 0
ijt) is binary, while the batch-size (B̄0

ijt)

and the inventory (Skt) variables are non-negative. ρik,

τi, β
MIN
ij /βMAX

ij , ξkt, πk, and πINVk /πBOk denote mass



conversion coefficients, task processing times, batch-size

lower/upper bounds, net of material deliveries and or-

ders due, material price, and inventory/backlog cost, re-

spectively. A discrete time-grid with spacing of δ = 1

hour is used.

The model is kept identical for each open-loop prob-

lem, except for the updated parameter values. The

scheduling horizon (moving horizon) length is denoted

by MH and the rescheduling frequency by RF. RF=x

implies that rescheduling is carried out every x hours.

The relative estimated optimality gap termination crite-

rion for the optimization is denoted by OPTCR (Wolsey,

1998).

Motivating Examples

In the subsections to follow, we present examples

that showcase how for the deterministic (re)scheduling

problem even without any stochastic features, surprising

closed-loop solutions can be obtained.

Empty closed-loop schedule

We solve a profit maximization problem, for PN-1

(Fig. 1), wherein, sales are allowed at all times; with

odd number of time-periods in the moving horizon, we

can get an empty closed-loop schedule (Fig. 2A).

Figure 1. Process network-1 (PN-1)

Figure 2. (A) Empty closed-loop schedule for PN-1 (Fig.

1). (B) Left shifting of tasks by making open-loop objective

greedy gives a non-empty closed-loop schedule. (Here MH=5,

RF=1, and OPTCR=0%)

With the task taking even number of time-periods for

processing, but only odd number of time-periods being

available in the scheduling horizon, multiple optimal so-

lutions exist, and one of them is to have two tasks start

after a single idle time-period. This open-loop solution

results in an empty closed-loop schedule, since task start

decisions are always postponed and never implemented.

To circumvent this problem, an ad-hoc fix that can be

applied to the open-loop problem is to left-shift open-

loop schedules by favoring early sales in the objective

(greedy objective). Thus we get a non-empty closed-

loop schedule (Fig. 2B). Although, here by modifying

the objective function we could achieve improvement, in

the general case it is not known what modifications are

needed to obtain a good closed-loop solution.

Optimality of open-loop

Let us consider PN-2 (Fig. 3) with orders of size

3 tons for each product material due every 3 ± 1 hours

(integer uniform distribution). The objective is to maxi-

mize profit. Excess-sales are allowed only at those times

when orders are due. A greedy open-loop objective is

used in which early sales bring more profit than latter

sales so that tasks are left-shifted, and excess production

is shipped out as soon as possible.

Figure 3. Process network-2 (PN-2).
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Figure 4. Less favorable material M3 is produced more in

closed-loop schedules when OPTCR=0% (magenta). Black

represents OPTCR=5%. Production and shipment closer to

minimum needed (red) is better.

Since M2 and M3 sell at the same price, but the pro-

cessing time for task T2 is less than that for T3, the

most profitable schedule is where T2 dominates execu-

tions on unit U2, with minimum possible T3 executions

sufficient to just meet the demand for M3.

A closed-loop schedule for 1 week obtained with

MH=12, RF=1, and with each open-loop optimization

solved to optimality (OPTCR=0%), has 25 executions



of T3. Surprisingly, when each open-loop optimization

is solved suboptimally (OPTCR=5%), the number of

executions for T3 in the closed-loop schedule reduces to

21, which is a better closed-loop solution (see Figs. 4

and 9)! As we will discuss in the case study, this unex-

pected improvement in the closed-loop solution quality

can be explained and addressed.

Considerations in Online Scheduling

Rescheduling is traditionally seen as an event-

triggered activity wherein an event could be the arrival

of an order, a unit breakdown, a processing delay, etc.

However, we reason that rescheduling should also be

performed periodically due to the consideration of ad-

ditional time in the scheduling problem, which is also

in essence a resource availability change. Rescheduling

too often has an implicit cost associated with it due to

the plant nervousness that it induces (Vieira et al., 2003;

Kopanos et al., 2008). Hence, it is important to quantify

how online scheduling affects the quality of the imple-

mented closed-loop schedule, and then decide how often

rescheduling should be performed.

In addition to rescheduling frequency, a key attribute

of the open-loop problem is the scheduling horizon

length because it dictates if orders farther into the future

are accounted for while computing the current schedule.

A myopic horizon can lead to bad early decisions, ne-

cessitating costly revision in the future. In general, it

might be a good idea to employ as long a horizon as pos-

sible. In practice, however, longer horizons increase the

problem size and might render computing the schedule

challenging in real-time. Hence it is natural to ask what

should be an appropriate length for the moving horizon.

The solution to large scale scheduling problems can

be computationally very expensive. Due to the lim-

ited availability of online computation time, it is not

always possible to solve the models to optimality. In

general, it has been assumed that the closed-loop solu-

tion would deteriorate due to accumulation of these sub-

optimalities. However, no study has indeed confirmed

this assumption. In fact, one can argue that subop-

timal moves can be corrected due to feedback, conse-

quently the closed-loop schedule remains minimally af-

fected. Furthermore, due to the repetitive computations

employing a finite moving horizon, it cannot be directly

deduced that the open-loop optimization should even

be attempted to be solved to optimality, especially since

suboptimal solutions can be obtained faster allowing fre-

quent rescheduling.

Computational Results

We investigate the effect of RF, MH and OPTCR on

closed-loop performance for cost minimization and profit

maximization. We present results for PN-2 with orders

of M2 and M3 each due every 3±1 hours (uniform integer

distribution), and of size 3± 0.3 tons (uniform continu-

ous distribution). We discern statistical significance by

carrying out two-way ANOVA on the computational re-

sults (Wonnacott and Wonnacott, 1972). Similar trends

were obtained from studies on other process networks.

Figures 5A(i-ii) show how closed-loop quality is af-

fected by rescheduling frequency. The overall trend is

that when rescheduling is carried out more frequently

the closed-loop quality improves. This improvement

with more frequent rescheduling frequency, however, is

minimal with longer moving horizon lengths (MH=24,

30). Figures 5B(i-ii) show how the closed-loop qual-

ity for cost minimization is affected by moving horizon

length. The overall trend is that as the moving hori-

zon length increases the closed-loop quality improves.

Infrequent rescheduling (RF=6) is affected more by

shorter moving horizon length than frequent reschedul-

ing (RF=1). Figures 5C(i-ii) show how the closed-loop

quality changes with OPTCR. We present results with

MH=24 hours, but MH=12, 18, and 30 hours also ex-

hibit qualitatively identical trends. The overall trend is

that as OPTCR increases, closed-loop quality deterio-

rates only slightly, and much less than the correspond-

ing percentage of OPTCR. Frequent rescheduling is af-

fected by non-zero OPTCR slightly less than infrequent

rescheduling.

We also investigate the effect of frequency at which

orders are due and the order-sizes. In Fig. 6A, we see

that rescheduling often is better irrespective of the fre-

quency at which orders are due. This is interesting,

since rescheduling has been traditionally thought to be

only needed on event-triggers, but the computational

evidence here shows otherwise. In Fig. 6B, we see

that employing a longer moving horizon becomes even

more important as the load increases. This is expected,

since to meet a big order, multiple batch executions are

needed which need to be planned ahead. In addition,

when these big orders are temporally spaced out (in-

frequent), a short moving horizon, owing to its limited

ability to look ahead, is unable to start production in

a timely manner to meet these orders. Finally in Fig.

6C, we see that the deterioration in closed-loop quality

due to non-zero OPTCR is not affected in any particular

way by the frequency or size of orders.
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Figure 5. Effect of RF, MH, and OPTCR on closed-loop quality. Each data point is an average cost of closed-loop schedules

for 10 demand samples, and is scaled by mean closed-loop cost corresponding to (A) MH=30, RF=1; (B) MH=36, RF=1;

(C) OPTCR=0%, RF=1, within each subplot, respectively. Each open-loop problem is solved to optimality. Top row

(A(i)-C(i)) shows results for cost minimization, bottom row (A(ii)-C(ii)) shows results for profit maximization.
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Figure 7. Mean estimated relative gap (Est. Gap) and mean

true relative gap of open-loop optimizations (True Gap), and

the resulting mean closed-loop deterioration (CL Det.), as a

function of OPTCR. Mean over 30 closed-loop schedules for

10 demand samples, computed using MH=24 with RF=1,3,6.

Discussion

In general, higher rescheduling frequency leads to

better closed-loop quality, however, beyond a threshold,

closed-loop performance does not improve. Short mov-

ing horizons can be myopic, thus unable to take good

current decisions, but lengths beyond a certain thresh-

old do not result in significant improvement, because in

this case, orders located in the latter part of the long

horizondo not affect decisions that will be immediately

implemented. An OPTCR lesser than a certain thresh-

old (in our results 5%), causes insignificant deterioration

in the closed-loop quality. This can be attributed to the

fact that the true gaps are significantly smaller than the

estimated gaps, and also due to the feedback. For ex-

ample, for cost minimization for OPTCR=5%, true gaps

and estimated gaps are on an average 0.24% and 4.28%

respectively, which translate to just 0.22% average de-

terioration in closed-loop quality (Fig. 7). Hence, in

general, it can be an acceptable trade-off to not solve

each open-loop problem to optimality or close to opti-

mality.

Having investigated how rescheduling frequency,

moving horizon length and suboptimality of solution to

open-loop problem affect the closed-loop quality, indi-

vidually, it is natural to ask if these also have any si-

multaneous effect. When we analyze this cross relation

(Fig. 5), we observe that a longer moving horizon, com-

pletely compensates for slower rescheduling frequency.

This is true, however, only for the deterministic case,

where once an order enters the moving horizon, there is

no uncertainty in its size or due-time. In the stochastic

case, if the order changes while it is within the moving

horizon, more frequent rescheduling would be required.



In addition, being able to reschedule frequently, even

if obtaining suboptimal solutions, may have economic

benefits. It is not very clear, however, if the resulting

closed-loop schedule from a longer moving horizon is less

prone to deterioration in quality than a shorter moving

horizon, due to suboptimal computations.

Case Study

We now again consider the motivating example in

which the open-loop objective favors early sales (greedy

objective). For suboptimal computations with greedy

objective, we observe consistently that the closed-loop

profit improves with increasing OPTCR (Fig. 8)! The

cumulative demand for material M3 over 1 week is 168

tons, hence, the minimum number of executions required

for task T3, with βMAX
T3,U2 = 10, to meet this demand is

17. An increase in the number of executions of T3 in

comparison to the minimum needed, is expected due to

the finiteness of the moving horizon. A finite (myopic)

moving horizon (MH=12) does not account for demands

far ahead in future and ships out any excess inventory

of M3 as early as possible (due to the greedy objective);

when a new demand of M3 enters the horizon, execu-

tion of a new T3 is required to meet this demand. The

greedy objective aggravates this effect by shipping early

and not maintaining inventory of M3 to meet future de-

mand. In a suboptimal solution, early sales are reduced

and excess inventory of M3 is held which is later used

to meet new demand. Thus, a move that appears to

be suboptimal in the current iteration (favoring inven-

tory over sales) turns out to be a good move in the

long run, leading to a better closed-loop schedule. This

improvement with OPTCR though holds only till a cer-

tain threshold value (here 5%); beyond this value the

open-loop solutions cannot be repaired. For example,

for OPTCR=10% both T2 and T3 have a small number

of executions resulting in the introduction of idle time

and thereby less sales and profit.

This myopic behavior can be corrected by, for exam-

ple, adding a constraint disallowing excess-sales of M3

in the first half of the moving horizon. Since sales are

allowed in the second half, excess M3 can still be pro-

duced in the first half. As shown in Fig. 9, this added

constraint leads to the best possible closed-loop sched-

ule (for both OPTCR=0% and OPTCR=5%) with the

minimum required 17 executions of T3. In the same fig-

ure we also show the closed-loop schedule obtained using

a non-greedy open-loop objective (no favoring of early

sales). For this objective, although the number of execu-
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maximization greedy objective. MH=24 is used. Each data

point is an average profit of closed-loop schedules for 100 de-

mand samples, scaled by mean closed-loop profit correspond-

ing to OPTCR=0%, RF=1.

tions of T3 are 18 (close to the best minimum 17), there

are missed opportunities (idle times) in the schedule.

These idle times can be explained by the right-shifting

of tasks due to multiplicity of solutions.

In Fig. 10, we show the effect of using different

rescheduling algorithms (using RF=3 and MH=12). We

see that addition of constraint results in the best possible

closed-loop performance for OPTCR=0% and 5%, but

not so for OPTCR=10%. This is because the constraint

was tailored to address the problem of executions of T3

over T2, but not to address idle times that are present

when OPTCR=10% is used.

This example thus shows how adding constraints to

open-loop problem is a powerful and effective way to

improve closed-loop performance; however, finding the

appropriate constraints for each situation is a challenge

and requires further investigation.

Conclusions

We presented a framework for the analysis of (online)

closed-loop schedules. We first showed that even in the

deterministic case, the relationship between the open-

loop problem solved online and the closed-loop sched-

ule is poorly understood. Applying methods to improve

solution to the open-loop problem, does not necessar-

ily translate to good solutions for the closed-loop prob-

lem. We studied how rescheduling frequency, moving

horizon length and suboptimal solutions of open-loop

problem affect the quality of closed-loop schedules. We

found that it is important to reschedule periodically,

even when there are no “trigger” events, something that

is in contrast with the current rescheduling approaches.

Also, we showed that suboptimal open-loop solutions do

not “accumulate”, but instead, are corrected through re-

visions due to feedback. Lastly, we explored objective

function modifications and addition of constraints to the



Figure 9. Closed loop schedules for unit 2; MH=12 with OPTCR values 0% (first), 5% (second) and with added constraint

(third); with OPTCR=0%, T3 is executed 25 times, while, with OPTCR=5% T3 is executed 21 times. The added constraint

(for both OPTCR=0% and 5%) brings down the executions of T3 to the best minimum of 17. Non-Greedy (fourth) corre-

sponds to MH=12, RF=1, OPTCR=0% for open-loop objective that does not favor early sales; it has 18 executions of T3

but has idle times (missed opportunities).
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open-loop problem as methods to improve closed-loop

performance. Although adding constraints can possibly

lead to lower quality open-loop solutions, they can ul-

timately result in higher quality closed-loop solutions.

Further work is needed to find appropriate constraints

that could improve closed-loop solution in the general

case. The scope of this work was limited to determin-

istic online scheduling, since as shown through the mo-

tivating examples, the deterministic case itself is laden

with several “paradoxes”. However, uncertainty is also

a major concern, thus studying online scheduling under

uncertainty is an interesting future direction.
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